
Computational Modal Logics

Carlos Areces Patrick Blackburn

{carlos.areces,patrick.blackburn}@loria.fr

INRIA Nancy Grand Est
Nancy, France

2009 - Copenhagen - Denmark

What is Logic, and why should I care?

I Probably all of you have heard about ’Logic’ before.

I But what is logic for you? Perhaps it’s the science that
studies strange symbols like

(p ∧ q)→ (p ∨ q)

∀x(Human(x)→ Mortal(x))

that are (allegedly) important in natural language semantics,
computer science, computational linguistics, for (somewhat
mysterious) reasons.

I And perhaps you’ve encountered what logicians called
‘theorems’, expressions like:

p ∨ ¬p or p → p.
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Back to Aristotle

Or perhaps you have met logic in a philosophical setting? You’re
aware of the work of Aristotle (384 BC - 322 BC), and in particular
his discussion of syllogisms. For example, his famous ‘Buffy’
syllogism:

All vampires are demons.
Angel is a vampire.
Therefore Angel is a demon.

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est

Tomorrow it will rain or it won’t. . .

Either way, logic may not have struck you as particularly exciting
or relevant to your work.

I Sentences like “John loves Mary, or not” or “It will rain or it
won’t, tomorrow” sound a bit silly. They don’t seem to be
very informative.

I Nor do simple syllogisms seem to have much to with with
reasoning in natural language (though, to be fair, they do
seem similar to the types of arguments found when reasoning
about simple ontologies or when working with WordNet).

I And they certainly seem far removed from the type of
arguments found in computer science and mathematics. And
the mathematicians notion of ‘theorem’ seems very different
(and much richer) than the logicians notion.
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Logics are languages

I We want you to think of logics as languages.

I In particular we want you to think of logics as ways of talking
about relational structures or models.

I That is there are two key components in the way we will
approach logic

I The logic: fairly simple, precisely defined, formal languages.
(This is where the funny symbols like ∧ and ∃ live).

I The model or relational structure: A simple ‘world’ (or
‘database’) that the logic talks about.
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Semantic perspective

That is, our perspective on logic is fundamentally semantic. It is
due to Alfred Tarski (1902–1983).

The semantic perspective is also known
as the model-theoretic perspective, or
even the Tarskian perspective.
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Logic or Logics?

The semantic perspective gives us a good way to think about the
following question: How many logics are there?
There are (at least) two ways to thing about Logic.

I Option 1, The Monotheistic Approach: Choosing one of all
possible logical languages and saying ‘This is THE Logic’, or

I Option 2, The Polytheistic Approach: As a discipline that
investigates different logical languages.
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Monotheism in the 20th century

Logical monotheism was a powerful force for much of the twentieth
century.

Perhaps the most influential monotheist
was Willard van Orman Quine, who
championed first-order classical logic as
the one-true-logic with vigor.

Though (disturbingly for the
monotheists) there were always those
who worshiped at other temples (such
as the intuitionistic logicians or Arthur
Prior).

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est



Polytheism in the 21st century

I But polytheism gradually became the dominant thread as
time went by.

I Why? Because logic spread everywhere. Computer scientists
used it. Early artificial intelligence relied on it. It cropped up
in economic and cognitive science. And it became a corner
stone of natural language semantics.

I However the most important point for this course, is that
polytheism as regards logic is very natural from a semantic
perspective.

I Once we have fixed the model or relational structures we wish
to work with (that is, once we have fixed our ‘world’) it is
natural to play with different ways of talking about it.
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Relational Structures (informal)

A relational structure (or model) consists of the following

I A non-empty set (often called D, for domain) of the model;
think of these as the objects of interest.

I A collection of relations R on the objects in D; think of these
as the relations of interest. We shall only work with binary
relations (that is, two place relations like “loves”, “<”, or
“to-the-right-of” in this course) to keep the notation simple.

I A collection of properties on the objects in D; think of these
as the properties of interests (perhaps “is red”, “is activated”,
or “is an even number”).

I A collection of designated individuals, that is, elements of D
that we find really special (maybe “Buffy”, “0”, or “1”)
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Our first relational structure

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny
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Reminder

A small mathematical reminder:

I Properties are thought of as subsets. That is, given any set
D, a property on D is simply a subset P of D; that is P ⊆ D.

I Binary relations are though of as sets of ordered pairs. That
is, given any set D, a binary relation R is a subset of D × D;
that is, R ⊆ D × D.
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Relational Structures (more formally)

A relational structure (or model) is a tuple of the form:

〈D, {Rm}, {Pn}, {Cl}〉

Sometimes we work with simpler forms. For example the following

〈D,R, ∅, ∅〉
we would usually write as:

〈D,R〉
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Another look at our first relational structure

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny

〈D, {loves, detests}, ∅,C 〉
D = {ju, jo, te, fr}
loves = {(ju, jo), (te, ju), (fr, ju)}
detests = {(jo, ju), (te, fr), (fr, te)}
C = {judy 7→ ju, johnny 7→ jo, terry 7→ te, frank 7→ fr}
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What can be thought of as a relational structure. . . ?

That’s the wrong question — the real question is, what can’t be
thought of as a relational structure?

In fact, it is very hard to think of anything (barring some rather
extreme mathematical examples) that can’t be viewed as a
relational structure.
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A general and important modelling tool

I All common mathematical structures can be though of as
relational structures. For a start, functions are simply special
kinds of relations.

I Moreover, groups, rings, field, vector spaces, . . . can all be
viewed as relational structures.

I Thus Tarski’s idea had substantial mathematical impact, and
this was decisive in establishing model-theory as an academic
discipline.

I Now it is the turn of other disciplines to draw on the Tarskian
insights.
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The three big themes

In this course we use the model-theoretic perspective to provide a
window on the following three issues:

I Inference: roughly speaking, what methods are there for
gaining new information by working with this logic?

I Expressivity: roughly speaking, what can I describe (and what
can’t I describe) using this logic?

I Computation: can computers help with such and such logic?
If so how, and how much?
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Inference tasks

The semantic perspective give us a good way to think about
inference tasks. We will mention the following:

I Model Checking: Given a certain logical description ϕ, and a
model M, does the formula correctly describe (some aspect
of) the model? More simply: is the formulas true (or
satisfied) in the model?

I Satisfiability Checking: Given a certain logical description ϕ,
does there exist a model where the description is satisfied?

I Model Building: Given a certain logical description ϕ, exhibit
a model where that description is true.

I Validity Checking: Given a logical description ϕ, is it true (or
satisfied) in all models?
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The Model Checking task

I As we shall learn, this is the simplest.

I However, it has also proved to be one of the most useful.

I A classic application is hardware verification. The model M is
a mathematical picture of (say) a chip. The logical
description ϕ describes some desirable feature of of the chip.
If the M makes ϕ true, then the chip will have that property.

I Incidentally, this example already suggests the need for
“designing logics for their application”. After all, there is not
reason to think that an off-the-shelf logic will provide exactly
what is needed to talk usefully about chips and their
properties.
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Satisfiability checking and Model Building

I A nice way to think of these problems is in terms of
constraints. We have some description, and we ask ourselves
is there anything that matches this description? That is, does
a model making this description actually exist, and can we
build it?

I Very useful. The description might be almost anything: for
example, a description of a parse tree (if you’re doing
computational linguistics).
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Validity checking

I A great deal of attention has been devoted to this task —
essentially, when people talk about “writing a theorem
prover”, they are talking about creating a computational tool
for solving this task.

I Why? After all, we’ve already mentions that p ∨ ¬p and
p → p are not going to set too many pulses racing. . .

I The answer is: checking if ϕ is valid is boring. But checking if
ϕ follows from Γ (Γ |= ϕ) is usually interesting. E.g.:

{(p ∨ q)} |= p ??? No

{(p ∨ q),¬q} |= p ??? Yes

((p ∨ q) ∧ ¬q)→ p is valid
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Logic is a tool for working with theories

I Let’s turn to mathematics. The intuitive idea is that we write
down a set Σ of all our axioms. These are the properties that
we assume are fundamental and indisputable; what we take
for granted. Σ is our theory.

I For example Peano axioms are a theory for the natural
numbers.

I Checking if the Goldbach theory is true in the natural
numbers boils down to verifying that

(
∧

PEANO)→ GOLDBACH

is a ‘trivial” formula, that is, a validity.
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Axiomatics is an ancient idea

The idea goes back to Euclid’s
celebrated book “The Elements”. This
is rightly considered one of the
foundational blocks of mathematics. It
is certainly that, but it is also one of the
foundations of modern logic.
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Expressivity

I The theme of expressivity is fundamental to this course —
and to a model-theoretically inclined logician, the theme is
absolutely fundamental — though this early in the course is
difficult to say very much about it.

I But the fundamental point is this. Once we have said which
relational structures we are interested in, there are many logics
suitable for talking about them. Each offers a different (often
a fascinatingly different) perspective on the same “world”.

I Linguists may like to recall the Sapir-Whorf hypothesis:
loosely speaking, the limits of our language are the limits of
the world. This analogy should not be taken too literally, but
it may be suggestive.
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Computation

However, we can already say quite a bit about computation and
how it enters the course. In fact it does so at a number of levels.

I First, ideas from theoretical computer science (such as
computational complexity) are fundamental tools for
analyzing logics.

I Second, more and more computer science is setting the
agenda in logic.

I Third, at a practical level we simply need computers when
working with logic.

Let’s consider these points in turn. . .
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How easy is it? Is it even possible?

I They say that there are some things that cannot be bought
for all the money in the world. (True Love?).

I There are problems that cannot be algorithmically solved even
with unlimited computing resources.

I The Halting Problem: Given a program P, decide whether P
ends or not.

I Some logics are algorithmically unsolvable in this sense (or to
be more precise, the inference problems they give rise to are
algorithmically unsolvable).

I Even when an inference problem can be algorithmically
solvable, the question arises: how hard is it?
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Computational Logics: Logic in Action!

I Logic was born as part of philosophy, and achieved greatness
as a branch of mathematics.

I Originally meant to model human reasoning processes
I and to help making correct inferences.
I Mathematicians then turned it into a new tool for

mathematics.

I With the advent of computer science, things changed

I Logic played a fundamental part in the development of
computers (logic circuits)

I but nowadays computer science fuels logic.

I In this course a computational view on logical systems will
never be far away.
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Why do we Need Computers?

I Why do we need computers?

I well, after all, if we are lazy and don’t want to do the work, it
would be nice if somebody else could do it for us!

I even if we could overcome our laziness, we wouldn’t be able to
do the task ourselves.

I Some of the inference tasks we want to tackle are simply too
difficult to perform without the help of computers

I sometimes billions of possibilities need to be checked to verify
that a system satisfies a certain property we want to enforce

I and even using computers we need to be clever, or all the time
till the end of the universe won’t be enough. that is,
computational logic is not (just) about clever engineering.
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Propositional Logic: Syntax

The language of propositional logic is simple. We have the
following basic symbols:

Propositional symbols: p, q, r , p1, p2, p3, . . .

Logical symbols: >, ⊥, ¬, ∨, ∧, →, ↔

Grouping symbols: (, )

PL is sometimes called Boolean logic (after the pioneering English
logician George Boole) and the symbols >, ⊥, ¬, ∨, ∧, → and ↔
are often called Boolean connectives.
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Propositional Logic: Syntax

We then say that >, ⊥ and any propositional symbol are formulas
(or well-formed formulas, or wff). These single-symbol formulas are
often called atomic formulas.

We then construct complex formulas (or compound formulas) in
accordance with the following recursive definition:

I If ϕ and ψ are formulas then so are ¬ψ, (ϕ ∨ ψ), (ϕ ∧ ψ),
(ϕ→ ψ), and (ϕ↔ ψ).

I Nothing else is a formula.

That’s the official syntax — but we often simplify the bracketing.
For example we would typically write ((p ∧ q)→ r) as (p ∧ q)→ r .
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Propositional Logic: Semantics

I The semantics is also
straightforward. A model for this
language is simply an assignment
V of true (T) or false (F) to the
propositional symbols. So this is a
very simple conception of model.

I Thus the models for PL are not
relational structures. Or at least,
so it seems. Actually, there is a
natural way to view PL in terms of
relational structures — but that
can wait.
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Propositional Logic: Semantics

So: V determines the truth values of the propositional formulas.
We then determine whether other formulas are true or false with
respect to V by using the following rules. Note: iff is short for if
and only if:

> is always true
⊥ is always false

¬ϕ is true iff ϕ is false
ϕ ∨ ψ is true iff either ϕ or ψ (or both) are
ϕ ∧ ψ is true iff both ϕ and ψ are
ϕ→ ψ is true iff either ϕ is false or ψ is true
ϕ↔ ψ is true iff ϕ and ψ are both true, or they are both false
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Truth Tables

A couple of remarks. First, you may have seen the previous truth
definition in the guise of a “truth table”.

p q ¬p p ∨ q p ∧ q p → q p ↔ q
T T F T T T T
F T T T F F F
T F F T F T F
F F T F F T T

Truth tables are a conceptually simple (if tedious) way of working
with PL.
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We don’t need all these connectives

Secondly, as many of you will know, many connectives can be
defined in terms of others. We don’t need them all.

I ⊥ is ¬>
I > is p ∨ ¬p.

I ϕ→ ψ is ¬ϕ ∨ ψ.

I ϕ ∧ ψ is ¬(¬ϕ ∨ ¬ψ).

I ϕ ∨ ψ is ¬(¬ϕ ∧ ¬ψ).

A set of logical symbols that can define all the others is called
truth functionally complete. For example, {¬,∧}, {¬,∨}, and
{→,⊥} are truth functionally complete sets. The set {∨,∧} is not.
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Fundamental Semantic Concepts

And now we come to the key semantic concepts that we already
mentioned:

I If a model V makes a formula ϕ true we say V satisfies ϕ, or
ϕ is true in V , and write V |= ϕ.

I If it is possible to find some model V that makes ϕ true, then
we say ϕ is satisfiable.

I If ϕ is true, no matter what what model V we use, then we
say that ϕ is valid and write |= ϕ.
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A Diplomatic Problem

You are chief of protocol for the embassy ball. The crown
prince instructs you either to invite Peru or to exclude
Qatar. The queen asks you to invite either Qatar or
Romania or both. The king, in a spiteful mood, wants to
snub either Romania or Peru or both. Who do you invite?

I Can we model this using just propositional logic?

I And what do we gain by doing that?

I What kind of questions can we “ask” our model?
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Formalizing the Diplomatic Problem

I Three propositional symbols

P ≡ invite Peru ¬P ≡ exclude Peru
Q ≡ invite Qatar ¬Q ≡ exclude Qatar
R ≡ invite Romania ¬R ≡ exclude Romania

I The problem can be formalized as

prince: P ∨ ¬Q ≡ invite Peru or exclude Qatar (or both)
queen: Q ∨ R ≡ invite Qatar or Romania (or both)

king: ¬R ∨ ¬P ≡ snub Romania or Peru (or both)

I Let Σ = (P ∨ ¬Q) ∧ (Q ∨ R) ∧ (¬R ∨ ¬P). Solving the
problem amounts to seeing whether Σ has a model (that is,
whether it is possible to make all three formulas in Σ
simultaneously true).
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Solving the Diplomatic Problem: informal reasoning

I What can we deduce from Σ?

prince: P ∨ ¬Q queen: Q ∨ R

P ∨ R

I That is, one consequence of satisfying the prince and the
queen is that we must invite Peru or Romania (or both).

I So, is Σ satisfiable? Yes, 2 out of 8 possible truth assignments
satisfy Σ

P = true Q = true R = false
P = false Q = false R = true

So either invite Peru and Qatar and not Romania
or invite Romania and not Peru and not Qatar
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Solving the Diplomatic Problem 2: truth tables

I Is there a way of computing this solution?

I Yes. Use truth tables.

P Q R P ∨ ¬Q Q ∨ R ¬R ∨ ¬P Σ
T T T T T F F
T T F T T T T
T F T T T F F
T F F T F T F
F T T F T T F
F T F F T T F
F F T T T T T
F F F T F T F

I This works — but it’s about as exciting as watching paint dry.
And may take considerably longer; truth tables are 2n in the
number of propositional symbols. There could be a lot of rice
on the chessboard before we’re finished . . .
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Expressivity

I As we remarked earlier, it is possible to think about the
semantics of PL in terms of relational structures.

I This gives us a way of comparing the expressivity of PL with
the more powerful logics we shall study later.

I The idea is simple: think of PL as a way of talking about one
element (!) relational structures of the form 〈{d}, {Pn}〉.

I That is, we have one individual, and one property for every
propositional letter pn (think of each Pn as a colour — we are
covering the individual with coloured dots).

I This way of thinking about PL semantics is equivalent to the
truth conditional semantics. Can you see why?

I That is, PL validity is completely determined by one element
relational structures! Measured this way, its expressivity is low.

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est



Computability

I We haven’t directly said much about computability, but it
should be clear that PL is a ”computable logic”.

I For a start, model checking is clearly computationally
straightforward — it’s linear in the length of the input formula.

I And checking satisfiability (and hence validity) is clearly
computable too. The truth table method shows that we can
do it in 2n steps, where n is the number of propositional
symbols in the input formula.

I Can we do better that O(2n) steps? Can other methods do
satisfiability/validity checking more efficiently.

I Sadly, it seems the answer is no.
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More than Diplomacy

I We saw a simple use of propositional logic in the “Diplomatic
Problem”.

I But the expressive power of PL is enough for doing many
more interesting things:

I graph coloring
I constraint satisfaction problems (e.g., Sudoku)
I hardware verification
I planning (e.g., graphplan).

I Note that these problems have real world applications!
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Graph Coloring

I The Problem: Given a graph G = 〈N,E 〉 where N is a set of
nodes and E a set of edges, and a fixed number k of colors.
Decide if we can assing colors to nodes in N s.t.

I All nodes are colored with one of the k colors.
I For every edge (i , j) ∈ N, the color of i is different from the

color of j .

I An Example:
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Graph Coloring: The Nitty-Gritty Details

I We will use n× k propositional symbols that we write pij (n is
the number of nodes in N, k the number of colors)

I We will read pij as node i has color j
I We have to say that

1. Each node has (at least) one color.
2. Each node has no more than one color.
3. Related nodes have different colors.

1. Each node has one color: pi1 ∨ . . . ∨ pik ,
for 1 ≤ i ≤ n

2. Each node has no more than one color: ¬pil ∨ ¬pim,
for 1 ≤ i ≤ n, and 1 ≤ l < m ≤ k

3. Neighboring nodes have different colors. ¬pil ∨ ¬pjl ,
for i and j neighboring nodes, and 1 ≤ l ≤ k
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Graph Coloring: Complexity

I Using the encoding in the previos page we efectively obtain for
each graph G and k color, a formula ϕG ,k in PL such that

every model of ϕG ,k tell us a way of painting G with k colors

I If M is a model of ϕG ,k in which pij is true, then paint node i
in G with color k .

I What have we done?!!!
I Perhaps you know that graph coloring is a difficult algorithmic

problem.
I It is actually what is called an NP-complete problem (i.e., one

of the hardest problems in the class of non-deterministiec
polynomial problems).

I Assuming that, we just proved that PL-SAT is also
NP-complete.
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So let’s turn to satisfiability checking . . .

I We’ll use tableaux to perform this task.

I A tableaux is essentially a tree-like data structure that records
attempts to build a model.

I Tableaux are built by applying rules to an input formula.
These rules systematically tear the formula to detect all
possible ways of building a model.

I Each branch of a tableaux records one way of trying to build a
model. Some branches (“closed branches”) don’t lead to
models. Others branching (“open branches”) do.

I The best way to learn is via an example. . .

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est

Tableaux for PL

Let’s see if we can build a model for (¬(p ∧ q) ∧ ¬¬r) ∧ p.

Rules for ¬ and ∧
(ϕ ∧ ψ)
ϕ
ψ

(∧)

¬(ϕ ∧ ψ)

¬ϕ ¬ψ (¬∧)

¬¬ϕ
ϕ (¬¬)

(¬(p ∧ q) ∧ ¬¬r) ∧ p

¬(p ∧ q) ∧ ¬¬r

p

¬(p ∧ q)

¬¬r

r

¬p ¬q

Contradiction!!! Model
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Satisfiability and Validity are Dual

I A formula ϕ is valid iff ¬ϕ is not satisfiable.

I A consequence of this observation is: if we have a method for
solving the satisfiability problem (that is, if we have an
algorithm for building models) then we have a way of solving
the validity problem.

I Why? Because: to test whether ϕ is valid, simply give ¬ϕ to
the algorithm for solving satisfiability. If it can’t satisfy it,
then ϕ is valid.

I Well, we have an algorithm for satisfiability (namely the
tableaux method), so let’s put this observation to work.
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Validity via Tableaux

Let’s show that (p ∧ q)→ p is valid

Rules for →
ϕ→ ψ

¬ϕ ψ
(→)

¬(ϕ→ ψ)
ϕ
¬ψ

(¬ →)

¬((p ∧ q)→ p)

p ∧ q

¬p

p

q

Contradiction!!!

It is impossible to apply any more rules, and
there are no open branches. Hence no model
exists for the input ¬ϕ. Hence ϕ is valid.
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Decision Methods for PL

I The most traditional methods for solving the SAT problem for
propositional logics (PL-SAT) behave as follows:

I They always answer SATISFIABLE or UNSATISFIABLE after
a finite time, for any input formula ϕ.

I They always answer correctly.

I The best known complete methods probably are
I truth tables
I tableaux
I axiomatics, Gentzen calculi, natural deduction, resolution
I Davis-Putnam
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Moving into Clausal Form
I Clausal Form: Write ϕ in conjunctive normal form (CNF)

ϕ =
∧
l∈L

∨
m∈M

ψ(l ,m), ψ a literal (i.e., p or ¬p).

This just means:
No conjunctions inside disjunctions

Negations only on propositional simbols
I Using the following equivalences:

(¬(p ∨ q)) ; (¬p ∧ ¬q)
(¬(p ∧ q)) ; (¬p ∨ ¬q)

(¬¬p) ; p
(p ∨ (q ∧ r)) ; ((p ∨ q) ∧ (p ∨ r))

The clause set associated to

(l11 ∨ . . . ∨ l1n1 )∧(l21 ∨ . . . ∨ l2n2 )∧. . .∧(lk1 ∨ . . . ∨ lknk
) is

{{l11, . . . , l1n1} , {l21, . . . , l2n2} , . . . , {lk1, . . . , lknk
}}
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Example

1. ¬(¬(p ∨ q) ∨ (¬¬q ∨ (p ∨ q)))

2. ¬(¬(p ∨ q) ∨ (q ∨ (p ∨ q)))

3. (¬¬(p ∨ q) ∧ ¬(q ∨ (p ∨ q)))

4. ((p ∨ q) ∧ ¬(q ∨ (p ∨ q)))

5. ((p ∨ q) ∧ (¬q ∧ ¬(p ∨ q)))

6. ((p ∨ q) ∧ (¬q ∧ (¬p ∧ ¬q)))

7. {{p, q}, {¬q}, {¬p}, {¬q}}
8. {{p, q}, {¬q}, {¬p}}

The Diplomatic Problem:
(P ∨ ¬Q) ∧ (Q ∨ R) ∧ (¬R ∨ ¬P)
{{P,¬Q}, {Q,R}, {¬R,¬P}}
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Conjunctive Normal Form

I This conversion to CNF can lead to exponentially big
formulas. Consider

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ · · · ∨ (pn ∧ qn).

I In CNF we get a formula:

(p1 ∨ · · · ∨ pn−1 ∨ pn) ∧ (p1 ∨ · · · ∨ pn−1 ∨ qn) ∧ · · · ∧ (q1 ∨ · · · ∨ qn−1 ∨ qn).

I Which has 2n clauses: each clause contains either pi or qi .

I We can obtain formulas en CNF which are only polynomially
bigger than the original formula. But they are only
equisatisfiable to the input and not equivalent.
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CNF: Using New Propositional Symbols

I Consider again

ϕ = (p1 ∧ q1) ∨ (p2 ∧ q2) ∨ · · · ∨ (pn ∧ qn).

I We can write ϕ′ as:

(r1 ∨ · · · ∨ rn) ∧ (¬r1 ∨ p1) ∧ (¬r1 ∨ q1) ∧ · · · ∧ (¬rn ∨ pn) ∧ (¬rn ∨ qn).

I A model satisfies ϕ′ if at least one of the new variables ri is
true. If ri is true, then pi and qi are true:
Every model that satisfies the translation also satisfies ϕ.

I On the other hand, if we have a model for ϕ then it makes
some pi and qi true. We can get a model for ϕ′ by seting ri

true.
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The Davis-Putnam Algorithm

I The Davis-Putnam method is perhaps one of the most widely
used algorithms for solving the SAT problem of PL

I Despite its age, it is still one of the most popular and
successful complete methods

Let Σ be the clause set associated to a formula ϕ

procedure DP(Σ)
if Σ={} then return SAT // (SAT)
if {} ∈ Σ then return UNSAT // (UNSAT)
if Σ has unit clause {l}

then DP(Σ[{l=true}]) // (Unit Pr.)
Choose literal l and

if DP(Σ[{l=true}]) return SAT
then return SAT
else return DP(Σ[{l=false}]) // (Split)

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est

Examples

¬(¬(p ∨ q) ∨ (¬¬q ∨ (p ∨ q))) −CNF→ {{p, q}, {¬q}, {¬p}}

{{P,¬Q}, {Q,R}, {¬R,¬P}}
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Davis-Putnam: The (Split) Rule
I The (Split) rule is non-deterministic: Which literal do we

chose?
I MOM’s heuristics: pick the literal that occurs most often in

the minimal size clauses (with ties broken at random or
following a fix order). This method is hard to beat for speed
and simplicity.

I Jeroslow-Wang’s heuristics: estimate the contribution each
literal is likely to make to satisfying the clause set and pick the
best

score(l) =
∑

c∈Σ & l∈c

2−|c|

I SATZ, one of the best available implementations of DP, uses
a heuristics aimed at maximizing unit propagation: generate
candidate set of branching literals, perform unit propagation,
choose the literal leading to the smallest simplified clause set
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DP: Performance

I The worst case complexity of the algorithm we show is
O(1, 696n), and a small modification moves it to O(1, 618n).

I This is an improvement!. . . Notice that, for example,
2100 = 1.267.650.000.000.000.000.000.000.000.000

1.696100 = 87.616.270.000.000.000.000.000
1.618100 = 790.408.700.000.000.000.000

I DP can reliably solve problems with up to 500 variables

I Sadly real world applications easily go into the thousands of
variables (remember coloring: #nodes × #colors).

I But this is worst time complexity. You might get lucky. . .

Areces & Blackburn: Computational Modal Logics INRIA Nancy Grand Est

You Might get Lucky

I Indeed, some method (called ‘incomplete methods’) rely in
that you might get lucky.

I We can’t cover them in the course, but intuitively,
I they are stochastic methods
I that randomly generate valuations
I and try to maximize the probability that the valuation actually

satisfies the input formula.

I Examples of these methods are GSAT and WalkSAT.

I For example, a k-coloring algorithm based on GSAT was able
to beat specialized coloring algorithms.
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What we covered up to now

I We discussed the balance between expressive power and
complexity.

I We can code complex problems in PL
(but the coding can be unintuitive, long, complex)

I We have eficient decision methods for PL
(able to cope with problems with hundres of propositional
symbols, but our codings easily get into the thousands).

I Still, no matter how nicely we paint them, 1-point relational
structures are boooooooooring.
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Relevant Bibliography

There are many good introductions to logic out there. Two
interesting ones, written from radically different perspectives are:

I Philosophy of Logic by Willard Van Orman Quine, Harvard
University Press; New edition, 1980). Still in stock at amazon.

I An Introduction to Non-Classical Logic, by Graham Priest,
Cambridge University Press; 2nd edition, 2008.

The first is a monotheistic bible. The second raises polytheism to
levels worthy of Terry Pratchett’s novel “Small Gods”.
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Relevant Bibliography

I The life of “the greatest sane logician” and inventor of Model
Theory. Alfred Tarski: Life and Logic, by Anita Burdman
Feferman and Solomon Feferman, Cambridge University Press,
1 paperback edition, 2008

I An introduction to good old fashioned model theory, by
Harold Simmons, http:
//www.cs.man.ac.uk/~hsimmons/BOOKS/books.html
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Relevant Bibliography

I One of the main founders of PL
was George Boole (1815–1864),
mathematician and philosopher.

I His book “An Investigation of the
Laws of Thought” was one of the
first mathematical treatments of
logic, and one of the most
important conceptual advances in
logic since the Aristotelian
syllogistic.
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Relevant Bibliography

I The truth table method was
pioneered by the philosopher
Ludwig Wittgenstein (1889–1951)
in his first famous philosophical
work, the “Tractatus
Logico-Philosophicus”.

I He used the method in support of
his celebrated “picture” theory of
meaning.
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Relevant Bibliography

I Tableau were originally introduced by the
Dutch logician Willem Beth.

I The particular form presented here is due
to Raymond Smullyan, logician, magician,
and puzzle-supremo.

I His classic exposition of the method is in
his book “First-Order Logic” (1968) ,
which remains one of the best technical
expositions of the subject.
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Relevant Bibliography
Cook’s Theorem: the satisfiability problem for propositional logic
is NP-complete.

I That is, any problem in NP can be reduced in
polynomial time to PL SAT.

I In plain English: if we find a cheap way of
solving PL SAT, we’ll also have a cheap way of
solving a hell of a lot more. (Coda: probably
there is no cheap way. Too good to be true. But

still, it has not been shown. P
?
= NP).

I Cook’s Web page:
http://www.cs.toronto.edu/~sacook/

Cook, Stephen (1971). The complexity of theorem proving procedures,
Proceedings of the Third Annual ACM Symposium on Theory of Computing,
151–158.
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Relevant Bibliography

The Davis Putnam Algorithm

I It was developed by Martin Davis and Hilary
Putnam.

I It was then improved (with the split rule) by
Martin Davis, George Logemann and Donald
Loveland. The correct name is DPLL.

I Davis’ Web page: http:
//www.cs.nyu.edu/cs/faculty/davism/

Davis, Martin; Putnam, Hillary (1960). A Computing Procedure for
Quantification Theory. Journal of the ACM 7 (1): 201–215.

Davis, Martin; Logemann, George, and Loveland, Donald (1962). A Machine
Program for Theorem Proving. Communications of the ACM 5 (7): 394–397.
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Simple Structures / Simple Languages
Think of standing in this colored graph (not a one-point one!):
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The Story So Far

I We looked at SAT-solving (that is, model building) for
propositional calculus in some detail.

I In particular, we discussed the Davis-Putnam algorithm.

I We also briefly met the concept of an NP-complete problem.

I In a nutshell, what we learned was this: although PL looks
very simple, it is actually capable of coding some very tough
problems indeed.
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Diamonds are forever!

I But let’s face it, we’re here to work with relational structures.
And although we saw yesterday that PL has a semantics in
terms of one-point relational structures (wow!), and although
we saw today that PL can, in a certain, code up information
about graphs, PL isn’t exactly our dream language.

I Why not? Because relational structures are full of points and
lines and other nice things, and we really want to be able to
get our hands on these directly! We want to be able to
describe them, to compute with them, and to draw inferences
about them. Using PL for this is like stroking a cat while
wearing a suit of armor!

I In this lecture we introduce a special language which let’s us
do this: we call the diamond language. How will this language
work. From the inside . . .
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Simple Structures / Simple Languages
Think of standing in this colored graph (not a one-point one!):
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Graphs with multiple relations
The previous sequence of slides motivates the language we will use

except that we will use a diamond symbol 3 instead of S , and it also

motivates the way we will define the semantics (we will continue to

“stand inside models”). But there is more addition to make.

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny

The previous graphs only had one relation. We often want to work with

more than one relation (as in the above relational structure) so we will

want multiple diamonds, one for each relation.
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Diamond languages: Syntax

We build the diamond language on top of PL. It is a very simple
extension. First we decide how many relations R we want to work
with, and then we add the following two symbols for each R:

〈R〉 [R]

If we are only going to work with a single relation, we usually write
these as:

3 2

We then extend the definition of formula by saying that if ϕ is a
formula, then so are 〈R〉ϕ and [R]ϕ.
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Diamond languages: Semantics
Suppose we are given a relational structure

〈W , {Rn}, {Pm}〉
where we have one relation R for each diamond 〈R〉, and one
property P for each proposition symbol p. Then we define:

M,w |= p iff w ∈ P,

M,w |= ¬ϕ iff not M,w |= ϕ (notation: M,w 6|= ϕ),

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ,

M,w |= 〈R〉ϕ iff for some v ∈W such that Rwv

we have M, v |= ϕ,

M,w |= [R]ϕ iff for all v ∈W such that Rwv

we have M, v |= ϕ.
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We don’t need both boxes and diamonds

2ϕ is ¬3¬ϕ.

3ϕ is ¬2¬ϕ.

So, like WallE, we can choose either the
diamond or the box — but we choose
the diamond!
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Waterloo Sunset . . .

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny

〈loves〉> ∧ 〈detests〉〈loves〉>
Note that this is true when evaluated at Terry
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A temporal model
The following relational structure is meant to be a simple “flow of
time”. We are interested in the transitive closure of the relation
indicated by the arrows.

t1 t2 t3 t4 t5

p p,q q

I 3q is true at t1, t2, t3 and t4.

I 3(p ∧ q) is satisfied at points t1, t2 and t3 (because all these
points are to the left of t4 where both p and q are true
together) but it is not satisfied at t4 and t5.

I Note that for any formula ϕ whatsoever, 2ϕ is satisfied at t5.
Why?
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Example
All formulas of the form

〈a〉 · · · 〈a〉〈b〉 · · · 〈b〉t
(that is, an unbroken block of 〈a〉 diamonds preceding an unbroken
block of 〈b〉 diamonds in front of a proposition symbol t which is
only true at the terminal node t) are satisfied at the start node s
of the following structure:

s t

a b

a b

Note that diamond sequences of this form correspond to the
strings accepted by the automaton.
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Fundamental Semantic Concepts

I A formula ϕ is globally satisfied (or globally true) in a model
M if it is satisfied at all points in M, and if this is the case
we write M |= ϕ.

I A formula ϕ is valid if it is globally satisfied in all models, and
if this is the case we write |= ϕ.

I A formula ϕ is satisfiable in a model M if there is some point
in M at which ϕ is satisfied, and ϕ is satisfiable if there is
some point in some model at which it is satisfied.
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Two example validities

The following two formulas are validities:

I 〈R〉(p ∧ q)→ 〈R〉p ∧ 〈R〉q
I 〈R〉> ∧ ¬〈R〉¬p → 〈R〉p

Can you see why? Note: you’ve seen the first one already . . .
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Inference and computation in the diamond language

I It should be clear that defining an inference systems (such as
tableaux systems) for the diamond language is going to be
trickier (and more interesting!) than for PL.

I It should also be clear that there are computational issues to
be settled — there is no obvious way to prove that the
diamond language is computable by “counting models” as we
did with PL.

I That is, we have traded in some tractability for expressivity.

I We’ll look at other inferential/computational issues in the
next lecture. For now, we’ll simply look briefly at model
checking, which is still easy, before turning to expressivity.
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Model checking I

Use a bottom-up labeling algorithm. To model check a formula ϕ:

I Label every point in the model with all the subformulas of ϕ
that are true at that point.

I We start with the proposition symbols: the valuation tells us
where these are true, so we label all the appropriate points.

I We then label with more complex formulas. The booleans are
handled in the obvious way: for example, we label w with
ψ ∧ θ if w is labeled with both ψ and θ.

I As for the modalities, we label w with 3ϕ if one of its
R-successors is labeled with ϕ, and we label it with 2ϕ if all
of its R-successors are labeled with ϕ.
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Model Checking 2
I The beauty of this algorithm is that we never need to

duplicate work: once a point is labeled as making ϕ true,
that’s it.

I This makes the algorithm run in time polynomial in the size of
the input formula and model: the algorithm takes time of the
order of

con(ϕ)× nodes(M)× nodes(M),

where con(ϕ) is the number of connectives in ϕ, and
nodes(M) is the number of nodes in M.

I To see this, note that con(ϕ) tells us how many rounds of
labeling we need to perform, one of the nodes(M) factors is
simply the upper bound on the nodes that need to be labeled,
while the other is the upper bound on the number of
successor nodes that need to be checked.
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Model checking is important

I Although this looks simple, this kind of model checking is
important.

I It is possible to strengthen the diamond language in various
ways to make it excellent for talking about graph structures
representing hardware chips and much else besides.

I The above algorithm can (and have been) extended to such
languages and applied to industrial hardware and software
design problems.

I Model checking is the simplest form of inference — but it is
important and useful.
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Expressivity and bisimulation

I What can we say with diamonds? And what can’t we say?
That is, how expressive is our diamond language?

I We will ask ourselves the following question: how good are
diamond languages at distinguishing between models?

I Let’s look at an example. . .
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Are these model diamond distinguishable?
Are these two models diamond distinguishable? To make the
question more precise: is there an diamond formula that is true at
the root node of one model, and not at the other?

p p p

No. There is no diamond formula that distinguishes them. The
diamond language, it seems, cannot count!

Now the key question: why exactly can’t the diamond language
distinguish the two models?
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Bisimulations (informal)

Two models are bisimilar if their points can be related in so that:

I Related points make the same propositional symbols true.

I If you make a transition in one model, you can make
“matching” transition in the other. Here “matching” means
that the points you reach by making the transitions are
related.
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Bisimulations (formal definition)

Here is th formal definition of bisimulation (for models with one
relation R). A bisimulation between models M = (W ,R,V ) and
M′ = (W ′,R ′,V ′) is a non-empty binary relation E between their
domains (that is, E ⊆W ×W ′) such that whenever wEw ′ we
have that:

Atomic harmony: w and w ′ satisfy the same
proposition symbols,

Zig: if Rwv , then there exists a point v ′ (in M′)
such that vEv ′ and R ′w ′v ′, and

Zag: if R ′w ′v ′, then there exists a point v (in M)
such that vEv ′ and Rwv .
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Bisimilar or not?
Are these two models bisimilar or not (assume all propositional
symbols are false all points)?

s u

If they are bisimilar, what is the bisimulation? If they are not
bisimilar, what is a formula that distinguishes them?

Yes, they are bisimilar; to this this, bend the upward-pointing
arrow on the left of the left-hand model downwards.
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Bisimilar or not?
Are these two models bisimilar or not (assume all propositional
symbols are false all points)?

s t

If they are bisimilar, what is the bisimulation? If they are not
bisimilar, what is a formula that distinguishes them?

2(2⊥ ∨ 32⊥) is a formula that distinguishes these models: it is
true in M at s, but false in N at t.
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Counting models

I The proof that the satisfiability problem for PL is decidable is
very simple:

I Suppose that you are given a formula ϕ and you are looking
for a model of ϕ.

I First note that propositional symbols that do not appear in ϕ
are irrelevant.

I We know that our models has only one point.
I Hence, we only need to list all possible ways of labelling that

single node with propositional symbols in ϕ.

I What about the 〈R〉 language?
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The Tableaux Method for Relational Structures

I We want to devise a tableau method for the language we
introduced to talk about complex relational structures.

I Let’s review the tableaux method that we introduced for
propositional logic:

s:(ϕ ∧ ψ)
s:ϕ
s:ψ

(∧)

s:¬(ϕ ∧ ψ)

s:¬ϕ s:¬ψ (¬∧)

s:¬¬ϕ
s:ϕ (¬¬)

I Pretty neat: 3 rules for an NP-complete
problem!

I But now we want to deal with more than a
single point.

I The solution is: labels!

I They will help us keep track of what is going
on in each point in our model.
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Now Lines!
I We have dealt in the previous slide with multiple points.

What about lines?
I Remember that the operator we introduced to talk about lines

in our language was 〈R〉ϕ and we said that

M,w |= 〈R〉ϕ iff there is w ′ s.t. wRw ′ and M,w ′ |= ϕ.

I Start with the labelled formula s:〈R〉ϕ.
If this formula is satisfiable, it is because
there is an R-sucessor t where ϕ holds.

I Start with the labelled formula s:¬〈R〉ϕ.
If there is an R-successor t, then ϕ should
not hold at t.

s:〈R〉ϕ
sRt
t:ϕ

(〈R〉)

for t a new label
s:¬〈R〉ϕ

sRt

t:¬ϕ (¬〈R〉)
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The Complete Cast, plus an Example

s:(ϕ ∧ ψ)
s:ϕ
s:ψ

s:¬(ϕ ∧ ψ)

s:¬ϕ s:¬ψ
s:¬¬ϕ

s:ϕ

s:〈R〉ϕ
sRt
t:ϕ

for t a new label

s:¬〈R〉ϕ
sRt

t:¬ϕ

j
j
�
���
��
����

�
��
����

�
��

contradiction!!!

s:(¬〈R〉p ∧ (〈R〉q ∧ 〈R〉p))
s:¬〈R〉p

s:(〈R〉q ∧ 〈R〉p)
s:〈R〉q
s:〈R〉p

sRt
t:q
sRu
u:p
t:¬p
u:¬p

I Which are the similarities/differences with tableaux for PL?

I How do we know that we got it right?

I What can we learn from the calculus?
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A Closer Look

s:(ϕ ∧ ψ)
s:ϕ
s:ψ

s:¬(ϕ ∧ ψ)

s:¬ϕ s:¬ψ
s:¬¬ϕ

s:ϕ

s:〈R〉ϕ
sRt
t:ϕ

for t a new label

s:¬〈R〉ϕ
sRt

t:¬ϕ

I Which similarities / differences
with tableaux for PL?

I Does the calculus terminate?
I What are labels? What are

they doing? Can we use
them?

I Is this an algorithm?
I Is it a good algorithm?

I Did we get it right?
I Did we get it right in the PL case, to start with?!

Consider the rule:

s:¬(ϕ ∧ ψ)

s:¬ϕ s:ϕ

s:¬ψI What can we learn from the calculus?
I Something about models!
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Tree Models

I Let us see the tableux proof we did before
again, for the formula

ϕ = ¬〈R〉p ∧ (〈R〉q ∧ 〈R〉p)

ϕs
¬〈R〉p

〈R〉q ∧ 〈R〉ps
¬〈R〉p
〈R〉q
〈R〉p

s

qt q,¬pt pu p,¬pu

s:(¬〈R〉p ∧ (〈R〉q ∧ 〈R〉p))
s:¬〈R〉p

s:(〈R〉q ∧ 〈R〉p)
s:〈R〉q
s:〈R〉p

sRt
t:q
sRu
u:p
t:¬p
u:¬p
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Tree and Finite Model Properties

s:(ϕ ∧ ψ)
s:ϕ
s:ψ

s:¬(ϕ ∧ ψ)

s:¬ϕ s:¬ψ
s:¬¬ϕ

s:ϕ

s:〈R〉ϕ
sRt
t:ϕ

for t a new label

s:¬〈R〉ϕ
sRt

t:¬ϕ

I Using the rules of the tableaux
calculus we only explore finite,
tree models.

I Let’s assume that the calculus
is correct (you will have to
believe me).

I Then the 〈R〉-language
I cannot say infinite,
I cannot say non-tree.

Theorem: A formula in the 〈R〉-language is satisfialle if and only
if it is satisfiable in a finite, tree relational structure.
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One is the Same as Infinite

I We said that we cannot say infinite in the 〈R〉 language.

I Let’s see this in more detail. Consider the model:

p p p p p . . .

I This is not a tree. Hence, there should be a tree like structure
which should be the same as this one for the 〈R〉 language.
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One is the Same as Two

I But let’s consider a simpler example (after all, infinite is quite
a big number).

I The 〈R〉 language cannot distinguish between one and two!!!

p p p
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Learning to Count

Suppose we want to say that two green nodes are accessible . . .

〈R〉green ∧ 〈R〉green
〈R〉(green ∧ pink) ∧
〈R〉(green ∧¬ pink)
〈= 2 R〉 green
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Alice in Wonderland
Humpty Dumpty: When I use a word, it means just what I choose it to
mean – neither more nor less.
Alice: The question is, whether you can make words mean so many dif-
ferent things.
Humpty Dumpty: The question is: which is to be master – that’s all.

I If the language cannot express something we are interested in,
we just extend the language!

I Counting successors:

M,w |= 〈= n R〉ϕ iff |{w ′ | wRw ′ and M,w ′ |= ϕ}| = n

I Clearly:

¬〈= 2 R〉p

p

〈= 2 R〉p

p p

The models are not the
same for the 〈= n R〉 lan-
guage.
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Extending the Language

I What other things we cannot say in the 〈R〉 language?
I Plenty:

1. In that particular node.
2. Everywhere in the model.
3. In a finite number of steps.

. . .

I Luckily, as Humpty Dumpty says, we are the masters, and we
can desing the language that better pleases us.

I Let’s get to work. . .
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Names for Points

Suppose that n is a name for a point. That is, it can label a
unique point in any relational structure.

n

n

〈R〉(blue ∧ n)〈R〉(pink ∧ n)

I Looks useful. . .

I We can introduce names into our language (you probably
know them as constants).
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Names for Points

I When we allow names in our language, our models will look
like this:

n1

n2

I We have already used
something like names.
Anybody remembers when?

I Tableaux for the 〈R〉
language!

I If we also introduce the
:-operator we can write
things like

n1:pink
n2:〈R〉pink

n2:〈R〉〈R〉〈R〉n2
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Everywhere in the model

I Suppose we want to paint everything pink (we love pink).

I Can we do it? Let’s see and example, consider this model:

w [U]pinkw

I Is there a formula of the 〈R〉
language, that we can make
true at w , so that pink is
true everywhere in the
model?

I Define the [U] operator as
M,w |= [U]ϕ iff for all w ′, M,w ′ |= ϕ

I Then M,w |= [U]pink if the
whole model is pink.

I Jah!
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In a Finite Number of Steps

I In the 〈R〉 language we can say
I In one step p: 〈R〉p
I In two steps p: 〈R〉〈R〉p
I . . .
I But we cannot say, in a finite (zero or more,

but unspecified) number of steps p:
p ∨ 〈R〉p ∨ 〈R〉〈R〉p ∨ . . .

I Define the 〈R∗〉 operator as

M,w |= 〈R∗〉ϕ iff there is w ′ s.t. wR∗w ′ and M,w ′ |= ϕ

for R∗ is the reflexive and transitive closure of R.
(Let’s write [R∗]ϕ for ¬〈R∗〉¬ϕ)

[U]pink[R∗]pink[R∗]pink

[U]pink[U]pink

I Pretty choosy! (ok, let’s say selective)
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Back to the Intuitions!
The main idea we want to get across is:

There are plenty of options, go and chose what you need!

Even more, if it is not there, then define it yourself

Remember what Humpty Dumpty said:
“The question is: Which is to be master”

I By combining the operators we have been discusing we obtain
a wide variety of languages.

I We go from languages of low expressivity (PL) to languages of
high expressivity (the selective [R∗]).

I We go from languages of ‘low’ complexity (NP-complete) to
languages of hight complexity (EXPTIME-complete).

I By chosing the right expressivity for a given application we
will pay the exact price required.
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Checking our Stock

I Suppose we want to define a modal language equivalent to
First Order Logic
(with equality and constants, but without function symbols).

I During the previous lectures we introduced a number of
operators.

I Propositional symbols
√

I The boolean operators ∧, ¬
√

I The 〈R〉 operator
√

I Constants
√

I The : operator
√

I The counting operators 〈= n R〉 ×
I The universal operator [U] Close, but no cigar!
I The reflexive and transitive closure operator 〈R∗〉 ×

I Which one can we use?
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The [U] operator is not enough

I Granted: we need universal quantification.

I But the [U] operator is not expressive enough.

I We won’t prove it here (one way to do it, for example is noting
that the language containing [U] is still decidable, while full
first order logic should be undecidable).

I The universal operator is not fine grained enough:
[U] says for all

and we need for all x

I First order quantification gives as a delicate control (via
variables) of what we are quantifying on.
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A Detour: Renaming Points

I I will define a litle piece of notation that I will need in the
next slide.

I As I want it to be very clear, I’ll do it here and give an
example.

I Let
I M = 〈D, {Ri}, {Pi}, {Ni}〉 be a model,
I w an element in D (w ∈ D),
I and ni a name.

I We writeM[ni :=w ] for the model obtained
from M where the only change is that now
ni is interpreted as w .

n1w1

w2

M

w1

n1w2

⇒ M[n1:=w2]
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First Order Quantification

I We introduce the operator 〈n〉 where n is a name (we will call
the operator rename n) as:
M,w |= 〈n〉ϕ iff for some w ′ M[n:=w ′],w |= ϕ

I Compare with
M,w |= 〈R〉ϕ iff there is w ′ s.t. wRw ′ and M,w ′ |= ϕ.

I Compare with 〈U〉ϕ := ¬[U]¬ϕ
M,w |= 〈U〉ϕ iff for some w ′,M,w ′ |= ϕ

I Actually, using 〈n〉 and : together we can define [U]:

[U]ϕ iff ¬〈n〉(n:¬ϕ)
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To infinity and beyond. . . ?!

Just how expressive is the language we
just defined?

I Does it have the tree model
property?

I Does it have the finite model
property?

Is it really a MACHO language, or is it
really just a toy? Let’s see. . .
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Example: Coding Infinity

This language hast tons of expressive power:

I Irr: [x ](x : ¬〈R〉x)

I Tran: [x ][y ](x : 〈R〉〈R〉y → x : 〈R〉y)

I Ser: [x ]〈y〉(x : 〈R〉y)

Theorem: If M |= Irr ∧ Tran ∧ Ser then M is infinite.

Daddy, Daddy, It’s broken!!! /
If the language can say ‘infinite,’ it means that we won’t be able to
know when to stop when searching for models for a formula.
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Capturing all First Order Logic

I We will now show that we can capture all First Order Logic
using: the 〈R〉 language, names, : and 〈n〉.

I We will (recursively) define a translation that will assign to
each formula of the First Order Language, and equivalent
formula in our language

Tr(s = t) = s:t

Tr(P(s)) = s:p

Tr(R(s, t)) = s:〈R〉t
Tr(¬ϕ) = ¬Tr(ϕ)

Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ)

Tr(∃s.ϕ) = 〈s〉Tr(ϕ)

( Tr(∀s.ϕ) = ¬〈s〉¬Tr(ϕ) = [x ]Tr(ϕ) )
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Examples

I Let’s write down a couple of formulas in First Order Logic and
translate them to our language. Again, let’s use the
convention [X ] for ¬〈X 〉¬

Tr(∀x .(Man(x)→ ∃y .(Woman(y) ∧ Loves(x , y))) )
[x ](Tr(Man(x)→ ∃y .(Woman(y) ∧ Loves(x , y))))

[x ](Tr(Man(x))→ Tr(∃y .(Woman(y) ∧ Loves(x , y))))
[x ](x :Man→ Tr(∃y .(Woman(y) ∧ Loves(x , y))))

[x ](x :Man→ 〈y〉(Tr((Woman(y) ∧ Loves(x , y)))))
[x ](x :Man→ 〈y〉(Tr(Woman(y)) ∧ Tr(Loves(x , y))))

[x ](x :Man→ 〈y〉(y :Woman ∧ x :〈Loves〉y))
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The Other Translation

I Of course, we can do the translation in the other direction as
well.

I We only need to realize that the semantic definition of all the
operators we introduced can be defined in first-order logic.

M,w |= 〈R〉ϕ iff there is w ′ s.t. wRw ′ and M,w ′ |= ϕ

Trw (〈R〉ϕ) = ∃w ′.(R(w ,w ′) ∧ Trw ′(ϕ))

I The w in Trw keeps track of where we are evaluating the
formula in the model.
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The Other Translation

I Let’s see the details. Assume that we have a formula in the
〈R〉 language extended with constants, and the the : and 〈n〉
operators.
We will (recursively) define an equivalent first order formula:

Trx(p) = P(x)

Trx(ni ) = (ni = x)

Trx(¬ϕ) = ¬Trx(ϕ)

Trx(ϕ ∧ ψ) = Trx(ϕ) ∧ Trx(ψ)

Trx(〈R〉ϕ) = ∃x .(R(x , y) ∧ Try (ϕ)) for y a new variable

Trx(n:ϕ) = Trn(ϕ)

Trx(〈n〉ϕ) = ∃n.Trx(ϕ)
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Relevant Bibliography

I The first polytheistic logicians was Arthur
Prior.

I Prior is the father of Tense Logic, a logic
that include the operators F and P to
talk about the future and the past.

I He was a strong advocate of the bottom
up way of viewing first-order logic that we
presented today.

Prior, Arthur (1967). Chapter V.6 of Past, Present and Future. Clarendon Press,
Oxford.
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Relevant Bibliography

Saul Kripke is the person largely
responsible for the relational semantics
for the diamond language. In fact, when
working with diamond languages,
relational structures are often called
Kripke models. Kripke, a child prodigy,
was 15 when he developed his first ideas
on the topic. Kripke has many other
substantial contributions to logic and
philosophy.
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Relevant Bibliography

I Unraveling, the procedure to turn arbitrary
models into trees, was introduced by Segerberg.

I Segerberg’s Web page:
http://www.phil.ucalgary.ca/
philosophy/people/segerberg.html

I A more general result about turning things into
other things can be proved using bisimulations.

I van Benthem’s Web page:
http://staff.science.uva.nl/~johan/

Segerberg, Krister (1971). An Essay in Classical Modal Logic, Department of
Philosophy Uppsala University, Sweden. Uppsala Philosophical Studies.

van Benthem, Johan (1985). Modal Logic and Classical Logic, Bibliopolis.
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Relevant Bibliography

I Many of the languages that we have been discussing are
investigated in detail in the area known as Modal Logics.

I The name ‘modal’ (in many cases as opposed to
‘classical’) doesn’t make much sense.

I Some of the languages we discussed today have been
extensively studied by you-know-who.
Patrick’s Web page: http://www.loria.fr/~blackbur

I M. de Rijke also pushed the idea of working with modal
logics extending the 〈R〉 language.

de Rijke’s Web page: http://staff.science.uva.nl/~mdr/

Blackburn, Patrick and van Benthem, J (2006). Chapter 1 of the Handbook of
Modal Logics, Blackburn, P.; Wolter, F.; and van Benthem, J., editors, Elsevier.

de Rijke, Maarten (1993). Extending Modal Logic PhD Thesis. Institute for
Logic, Language and Computation, Unviersity of Amsterdam.
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