Resolution-Based Theorem Proving for Modal and Description Logic

Renate Schmidt
The University of Manchester, UK

Overview

- The logics and translation to FOL
- First-order resolution
- Resolution decision procedures
- Other applications

Introduction

- Aim:
 - To study modal and description logics as fragments of first-order logic
 - To use techniques from first-order resolution for deciding modal and description logics
 - To mention some other applications

- Remarks:
 - Content not as detailed as in ordinary lectures
 - Feel free to ask questions!

Part I

The logics and translation to FOL
Basic modal logic

- Basic modal logic $K_{(m)} = \text{propositional logic plus } \langle r_1, r_2, \ldots \rangle$
 $Ac = \{r_1, r_2, \ldots \}$ (index set)
- Modal formulae: $\phi, \psi \rightarrow p_i \mid \neg \phi \mid \phi \lor \psi \mid \langle \alpha \rangle \phi$
 Actions: $\alpha, \beta \rightarrow r_j$
- $[\alpha] \phi \overset{\text{def}}{=} \neg \langle \alpha \rangle \neg \phi$
- Semantics: Kripke model $\mathcal{M} = (W, \{R_j \mid r_j \in Ac\}, \nu)$
 $\mathcal{M}, x \models p_i$ iff $x \in \nu(p_i)$
 $\mathcal{M}, x \models \neg \phi$ iff $\mathcal{M}, x \not\models \phi$
 $\mathcal{M}, x \models \phi \lor \psi$ iff $\mathcal{M}, x \models \phi$ or $\mathcal{M}, x \models \psi$
 $\mathcal{M}, x \models \langle r_j \rangle \phi$ iff for some R_{r_j}-successor y of x $\mathcal{M}, y \models \phi$
 $\mathcal{M}, x \models [r_j] \phi$ iff for all R_{r_j}-successors y of x $\mathcal{M}, y \models \phi$

Extensions of the basic modal logic

- Traditional MLs: extension of $K_{(m)}$ with extra modal axioms
 - epistemic ML, doxastic ML, …
- Dynamic MLs: extensions of $K_{(m)}$ with operators on actions
 - dynamic logic PDL = $K_{(m)}(\lor, \cdot, *, ?)$
 - description logics with role operators

<table>
<thead>
<tr>
<th>Reading of $[r_j] \phi$</th>
<th>Notation</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ is necessary</td>
<td>$\square \phi$</td>
<td>basic modal logic K</td>
</tr>
<tr>
<td>agent j knows ϕ</td>
<td>$K_j \phi$</td>
<td>epistemic logic $KT45_{(m)}$</td>
</tr>
<tr>
<td>agent j believes ϕ</td>
<td>$B_j \phi$</td>
<td>doxastic logic $KD45_{(m)}$</td>
</tr>
<tr>
<td>action r_j causes ϕ</td>
<td>$[r_j] \phi$</td>
<td>dynamic logic PDL</td>
</tr>
<tr>
<td>R_{r_j}-relatives of only C_{ϕ}s</td>
<td>$\forall R_{r_j}, C_{\phi}$</td>
<td>description logics, ALC family</td>
</tr>
</tbody>
</table>

Dynamic modal logics

- $K_{(m)}$ plus action-forming operators
- Actions: $\alpha, \beta \rightarrow r_j \mid \neg \alpha \mid \alpha \lor \beta \mid \alpha \cdot \beta \mid \phi^c \mid id$
- Semantics:
 - $R_{\neg \alpha} \overset{\text{def}}{=} (W \times W \backslash R_{\alpha})$
 - $R_{\alpha \lor \beta} \overset{\text{def}}{=} R_{\alpha} \cup R_{\beta}$
 - $R_{\alpha \cdot \beta} \overset{\text{def}}{=} \{(x, y) \mid (y, x) \in R_{\alpha}\}$
 - $R_{\phi^c} \overset{\text{def}}{=} \{(x, y) \mid x \in R_{\phi}\}$
 - $R_{id} \overset{\text{def}}{=} Id_W$
- … defines Peirce logic
- Very expressive; undecidable; has many decidable sublogics
- $K_{(m)}(*_1, \ldots, *_n) = K_{(m)}$ extended with $*_1, \ldots, *_n$

Lattice of dynamic modal logics

decidable DMLs/DLs without relational \neg
decidable DMLs/DLs with relational \neg
this talk

$BML = K_{(m)}(\lor, \cdot, *)$
Why are extensions with ¬ and ⌜interesting?

- $K(m)(⌜)$ = tense logic; $⌜[α⌜]$ is past operator
- $K(m)(¬)$ = the logic of ‘some’, ‘all’ and ‘only’

possibility op	$⌜(α)ϕ$	‘ϕ is true at some $α$-successor’
necessity op	$¬(⌜α)¬ϕ$	‘ϕ is true at all $α$-successors’
sufficiency op	$¬⌜(¬α)ϕ$	‘ϕ is true at only $α$-successors’

- Also definable (by non-logical axioms) are:
 - left cyl., right cyl., cross product, domain/range restriction

- Standard tableau methods decide $K(m)(⌜)$
- $K(m)(¬)$ and $K(m)(¬,⌜)$ do not have the tree model property
- Using unrestricted blocking $K(m)(¬)$ and $K(m)(¬,⌜)$ can be decided with tableau

First-order logic: Background

- Most important ‘unifying’ formalism for knowledge representation and reasoning in CS and AI
- Very Expressive: most domain knowledge can be represented with ease
- Sound and complete deduction calculi exist
- Many reasoning tools available
- Reasoning is undecidable (not a problem!)
- Many decidable fragments
- Many practical decision procedures for decidable fragments

Syntax of first-order logic

- Terms:
 - $s, t, u → x$ (first-order variable)
 - a (constant)
 - $f(s_1, \ldots, s_n), n > 0$ (functional term)

- Atoms:
 - $A, B → P(s_1, \ldots, s_n), n ≥ 0$ (non-equational atom)
 - $s ≈ t$ (equational atom)

- First-order formulae:
 - $F, G → ⊥ | ⊤ | ϕ$ (atomic formula)
 - $¬F | (F ⋆ G) ⋆ ∈ \{∧, ∨, →, ↔\}$ (quantified formulae)

Standard translation of MLs into FOL

- Translation mapping: $L \xrightarrow{Π} FOL$
 - sound & complete, efficiently computable (linear/polynomial)
 - Standard translation based on semantics of source logic L
- Question: $Γ \models φ$?
 - Where $Γ \equiv \{p → q\}$
 - $ϕ \equiv rp$
- Equivalent to: $Π(Γ) \models_{FOL} Π(ϕ)$?
 - $Π(Γ) = ∀x [Q_p(x) → Q_q(x)]$
 - $Π(ϕ) = ∀x ∀y (R(x, y) → ∃z (R(y, z) ∧ Q_p(z)))$
- Now give to any FOL prover
Using translation to FOL

- Let \(L \) be given DML/DL
 \[F_L = \Pi(L) \] corresponding FO fragment
- \(\Pi \) sound & complete \(\Rightarrow \) any FOL prover can be used
- \(\Pi \) efficiently computable \(\Rightarrow \) if \(L \) decidable then \(F_L \) decidable
- FO methods are not automatically decision procedures for \(F_L \)
 - Identify decidable FO fragment \(G \) encompassing \(F_L \) and use decision procedure of \(G \)
- \(F_L \) not necessarily subfragment of known decidable FO fragm.
 - Develop FO decision procedure for \(F_L \)
- Decision procedure of \(G \) might not be suitable for purpose
 - Develop suitable refinement for purpose of \(F_L \)

Resolution

- Refutation approach, testing (un)satisfiability
- Operates on clauses
- Two rules: resolution and factoring
- No branching rules required \(\Rightarrow \) derivations are linear

\[
\begin{align*}
\text{Resolution:} & \quad \frac{C \lor A \quad \neg A \lor D}{C \lor D} \\
\text{Factoring:} & \quad \frac{C \lor A \quad A}{C \lor A}
\end{align*}
\]

Theorem 1

\(\text{Res} \) is sound and (refutationally) complete for propositional and ground clause logic

Clause logic

- Language of resolution is that of clause logic
- Literals:
 \[L \quad A \quad \text{ (positive literal, atom)} \]
 \[| \quad \neg A \quad \text{ (negative literal)} \]
- Clauses:
 \[C, D \quad \perp \quad \text{ (empty clause)} \]
 \[| \quad L_1 \lor \ldots \lor L_k, \quad k \geq 1 \quad \text{ (non-empty clause)} \]
- Free variables interpreted as implicitly universally quantified
- Clauses regarded as multi-sets of literals
 - \(P(a) \lor P(a) \lor Q(x) \) is not the same as \(P(a) \lor Q(x) \)
Transformation to clausal form

- Basic algorithm (too naive):
 1. Transform into prenex normal form (PNF): move quantifiers to the front
 \[Q_1 \wedge \ldots \wedge Q_n G \quad (G \text{ quantifier-free}) \]
 2. Skolemisation: eliminate quantifiers
 \[\leadsto \quad \text{quantifier-free formula} \]
 3. Transform into conjunctive normal form (CNF)
 \[\leadsto \quad C_1 \wedge \ldots \wedge C_n \]
 4. Classify
 \[\leadsto \quad \text{set of clauses } N = \{ C_1, \ldots, C_n \} \]
- For any \(F \): \(F \) is satisfiable iff \(\text{Cls}(F) \) is satisfiable
- Various standard optimisations exist (see later)

Running example: Transformation to clausal form

- Take \(\phi \overset{\text{def}}{=} [r](\neg p \vee \langle r \rangle p) \); \(\phi \) is satisfiable in \(K(m) \)
- FO translation:
 \[\exists x[\forall y (R(x, y) \rightarrow (\neg Q_p(y) \vee \exists z (R(y, z) \wedge Q_p(z))))] \]
- Prenex normal form:
 \[\exists x \forall y \exists z [\neg R(x, y) \vee \neg Q_p(y) \vee (R(y, z) \wedge Q_p(z))] \]
- Skolemisation:
 \[\neg R(a, y) \vee \neg Q_p(y) \vee (R(y, f(y)) \wedge Q_p(f(y))) \]
 \[\neg \text{Sk. const. for } \exists x \quad \neg \text{Sk. term for } \exists z \]
- CNF:
 \[(\neg R(a, y) \vee \neg Q_p(y) \vee R(y, f(y))) \wedge \]
 \[(\neg R(a, y) \vee \neg Q_p(y) \vee Q_p(f(y))) \]
- Clausal form: drop \(\wedge \) and outer (,)

Basic resolution calculus \(\text{Res} \) for FO clause logic

- \(\text{Res} \) for ground clause logic plus unification
 \[C \vee A \quad \neg B \vee D \quad (C \vee D)_{\sigma} \quad \text{if } \sigma = \text{mgu}(A \equiv B) \]
- Resolution:
 \[\frac{C \vee A \vee B}{(C \vee A)_{\sigma}} \quad \text{if } \sigma = \text{mgu}(A \equiv B) \]
- Factoring:
 \[\frac{C \vee A \vee B}{(C \vee A)_{\sigma}} \quad \text{if } \sigma = \text{mgu}(A \equiv B) \]
- Example:
 \[Q(y) \vee P(f(y)) \quad \neg P(z) \vee R(z, a) \quad \sigma = \{ z/f(y) \} \]

Theorem 2
\(\text{Res} \) is sound and (refutationally) complete for FO clause logic

- Problem: Extremely prolific at generating new clauses

Running example (cont’d): Applying basic resolution

- Clausal form:
 \[1. \quad \neg R(a, y) \vee \neg Q_p(y) \vee R(y, f(y)) \quad \text{given} \]
 \[2. \quad \neg R(a, y) \vee \neg Q_p(y) \vee Q_p(f(y)) \quad \text{given} \]
- Resolvents under \(\text{Res} \):
 \[3. \quad \neg R(a, a) \vee \neg Q_p(a) \vee \neg Q_p(f(a)) \vee \neg Q_p(f^2(a)) \quad (1.3, 2.1) \]
 \[4. \quad \neg R(a, f(y)) \vee R(f(y), f^2(y)) \vee \neg R(a, y) \vee \neg Q_p(y) \quad (1.2, 2.3) \]
 \[5. \quad \neg R(a, f^2(y)) \vee R(f^2(y), f^3(y)) \vee \neg R(a, f(y)) \quad (2.3, 4.4) \]
 \[\vee \neg R(a, y) \vee \neg Q_p(y) \quad \text{etc} \]
- Problem: Termination for satisfiable formulae
 - Clauses expand in width and depth
Modern resolution framework

... = resolution calculus Res + restrictions + control

- Guiding principle: Avoid unnecessary inferences whenever possible
- Local restrictions: control inferences performed via
 - Admissible ordering \(\succ \)
 - Selection function \(S \)
- Global restrictions of search space via
 - General notion of redundancy
- Important for implementation: strategies & heuristics, fairness

Ordered resolution calculus with selection \(Res^\succ \)

- Assume: \(\succ \) admissible atom ordering; \(S \) selection function
- Ordered resolution with selection rule:
 \[
 \frac{C \lor A}{(C \lor D)\sigma}
 \]
 provided \(\sigma = \text{mgu}(A \equiv B) \) and
 (i) \(A\sigma \) strictly maximal wrt. \(C\sigma \);
 (ii) nothing selected in \(C \) by \(S \);
 (iii) either \(\neg B \) selected,
 or else nothing selected in \(\neg B \lor D \)
 and \(\neg B\sigma \) maximal wrt. \(D\sigma \)

- Note: variables of premises must be renamed apart

Ordered resolution calculus with selection \(Res^SV \) (cont’d)

- Ordered factoring rule:
 \[
 \frac{C \lor A \lor B}{(C \lor A)\sigma}
 \]
 provided \(\sigma = \text{mgu}(A \equiv B) \) and
 (i) \(A\sigma \) is maximal wrt. \(C\sigma \);
 (ii) nothing is selected in \(C \)

Theorem 3
\(Res^SV \) is sound and (refutationally) complete for FO clause logic

Local search control parameters

- Admissible ordering \(\succ \)
 - total, well-founded on ground terms and atoms
 - on ground literals: \(\ldots \succ \neg A \succ A \succ \neg B \succ B \succ \ldots \)
 - stable under substitutions
- Selection function \(S \): selects only negative literals
 - \(S(C) = \) possibly empty multi-set of negative literal occurrences in \(C \)
 - Example of selection with selected literals indicated as \(L \):
 \[
 \neg A \lor \neg A \lor B \lor \neg B_0 \lor \neg B_1 \lor A
 \]
- Idea:
 - Inferences restricted to \(\succ\)-maximal or \(S\)-selected literals
 - \(S \) overrides \(\succ \)

M4M School, Copenhagen, Nov. 2009 – p.21
Running example (cont’d): Using ordered resolution

- Recall using Res clauses expand in width and depth
- Use ordering and/or selection function to prevent this

1. \(\neg R(a, y) \lor \neg Q_p(y) \lor R(y, f(y)) \) given
2. \(\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y)) \) given

- Let \(\succ \) extension of subterm ordering + no selection f. \((S = \emptyset) \)
- \(f(t) \succ t \); precedence on pred. symbols: \(R \succ Q_p \)
- first criterion: \(\succ \) on maximal arguments
- No inference steps possible in Res\(^{\succ} \) !

1. \(\neg R(a, y) \lor \neg Q_p(y) \lor R(y, f(y)) \) given
2. \(\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y)) \) given

Search spaces become smaller

- Assume \(P \succ Q \succ R \succ T \) and nothing is selected, i.e. \(S = \emptyset \)

1. \(\neg T \lor P \lor Q \) given
2. \(\neg P \lor \neg R \) given
3. \(\neg Q \) given
4. \(\neg T \lor Q \lor \neg R \) Res 1, 2
5. \(\neg T \lor \neg R \) Res 3, 4

- Derivation is completely deterministic
- Generally, proof search still non-deterministic but search space is much smaller than with unrestricted resolution
- Exercise: Choose selection function so that no inferences are possible

Decidability of \(K(m) \) by ordered resolution

- How to show that Res\(^{\succ} \) decides \(K(m) \)?
 - Characterise a class of clauses closed under Res\(^{\succ} \) into which any \(K(m) \)-problem can be mapped
 - Show the class is bounded when defined over a bounded signature of predicate and function symbols
- Required: structural transformation . . .
Structural transformation of first-order formulae

Theorem 4

Let Q be a fresh predicate symbol. Then

$$ F[G(\bar{x})] \text{ satisf. iff } F[Q(\bar{x})] \land \forall \bar{x} (Q(\bar{x}) \leftrightarrow G(\bar{x})) \text{ satisf.} $$

- **Structural transformation rewrite rule:**
 $$ F[G(\bar{x})] \Rightarrow F[Q(\bar{x})] \land \forall \bar{x} (Q(\bar{x}) \leftrightarrow G(\bar{x})) $$
 - Introduces new pred. symbol Q for subformula $G(\bar{x})$ of F
 - View $Q(\bar{x})$ as an abbreviation for $G(\bar{x})$.

- Small overhead; efficient transformation to CNF
- Our case: Introduce new $Q_\phi \forall$ non-negated complex ϕ
 Take polarity of subformulae into account

Structural transformation for running example

- **FO translation of $\phi = [r](\neg p \lor (r)p):$$
 $$ \exists x \left[\forall y (\neg R(x, y) \lor (\neg Q_p(y) \lor \exists z (R(y, z) \land Q_p(z))) \right] $$
 - $Q_\phi(y)$
 - $Q_{\neg p\lor(r)p}(y)$
 - $Q_{\forall r, (\neg p\lor(r)p)}(x)$

- **Clausal form Cls $\exists \neg \Pi(\phi)$:**
 $$ \neg Q_{(r)p}(x) \lor R(x, f(x)) $$
 $$ \neg Q_{(r)p}(x) \lor Q_p(f(x)) $$
 $$ \neg Q_{\neg p\lor(r)p}(x) \lor \neg Q_p(x) \lor Q_{(r)p}(x) $$
 $$ \neg Q_{(r)p}(\neg p\lor(r)p)(x) \lor \neg R(x, y) \lor Q_{\neg p\lor(r)p}(y) $$
 $$ Q_{(r)p}(\neg p\lor(r)p)(a) $$

General form of input clauses

- **Form of input clauses for $K_{(m)}$:**
 $$ (-)Q_\phi(a) $$
 $$ R(a, b) $$
 $$ (-)Q_\phi(x) \lor (-)Q_1(x) \lor \ldots \lor (-)Q_n(x) $$
 $$ \geq 1 \text{ max. lits} $$
 $$ (-)Q_\phi(x) \lor \neg R(x, y) \lor (-)Q(y) $$
 $$ (-)Q_\phi(x) \lor R(x, f_\phi(x)) $$
 $$ (-)Q_\phi(x) \lor (-)Q(f_\phi(x)) $$

- **Ordering: binary literals \succ unary literals**
 - depth 2 literals \succ depth 1 literals
- **Step 1:** In each clause what are the maximal literals?
- **Step 2:** What do the resolvents & factors look like?
Clausal class MC

- General form of derived clauses
 - ground clauses with only unary literals
 - $(\neg)Q(x) \lor (\neg)Q_1(x) \lor \ldots \lor (\neg)Q_n(x)$ ($0 \leq n$)
 - $(\neg)Q(x) \lor (\neg)Q_1(x) \lor \ldots \lor (\neg)Q_n(x)$
 \[\lor (\neg)Q_1(f(x)) \lor \ldots \lor (\neg)Q_m(f(x))\] ($0 \leq n, m$)
- Let MC = class of these clauses:
 - ground unary clauses
 - $R(a, b)$
 - non-ground unary clauses with arguments x or $f(x)$
 - $(\neg)Q(x) \lor \neg R(x, y) \lor (\neg)Q(y)$
 - $(\neg)Q(x) \lor R(x, f(x))$

Decidability of $K(m)$ by ordered resolution

Lemma 5
For any finite clause set N in MC:
1. Any derived clause belongs to MC
2. Any Res^\succ-derivation from N terminates in EXPTIME

Theorem 6
Assume ϕ any formula and any set Γ in $K(m)$;
let $N = \text{Cls} \Xi(\Pi(\Gamma) \land \neg\Pi(\phi))$
1. Any Res^\succ-derivation from N terminates in EXPTIME
2. $\Gamma \models \phi$ iff Res^\succ derives \bot from N
- Complexity is optimal for $\Gamma \neq \emptyset$

Generalisation

- Clausal class MC :
 - ground unary clauses
 - $R(a, b)$
 - non-ground unary clauses with arguments x or $f(x)$
 - $(\neg)Q(x) \lor \neg R(x, y) \lor (\neg)Q(y)$
 - $(\neg)Q(x) \lor R(x, f(x))$
 - What if binary literals are negated ?
 - Lemma true for the extended class
 - Thus, the theorem is true for $K(m)(\neg)$!
 - What if arguments in binary literals can be swapped ?
Generalisation

- Clause class MC^*:
 - ground unary clauses
 - $(\neg)R^a(a, b)$
 - non-ground unary clauses with arguments x or $f(x)$
 - $(\neg)Q\phi(x) \lor (\neg)R^a(x, y) \lor (\neg)Q(y)$
 - $(\neg)Q\phi(x) \lor (\neg)R^a(x, f\phi(x))$
- Lemma true for the extended class
- Thus, the theorem is true for $K(m)(\neg)$!
- And for $K(m)(\neg, \cdash)$!

Ordered resolution decides $K(m)(\neg, \cdash)$

Theorem 7
Res^\succ is decision procedure for any logic between $K(m)$ and $K(m)(\neg, \cdash)$ and has (optimal) EXPTIME complexity

- Also true for any logic between $K(m)$ and $K(m)(\neg, \cdash)\cup \{\|, \vee, \cdot, \star, \times\}$
- Using the axiomatic translation translation many traditional MLs, incl. $KD45, S4, \ldots$, can be efficiently embedded into MC^*
- Gives complexity optimal decision procedures

Generalisation to BML and beyond

- Ordered resolution decides wider clausal class: DL^*
 $$MC^* \subseteq DL^*, \quad MC^* \subseteq DL^*, \quad BML \subseteq DL^*, \quad BML(\neg, \cdash, pos) \subseteq DL^*$$
 $$FO^2 \subseteq DL^*, \quad FO^3 \cap DL^* \neq \emptyset$$
- DL^* subsumes many DLs
- DL^* is NEXPTIME-complete

Theorem 8
Res^\succ + condensing, or splitting, decides DL^*, and hence all subsumed logics, incl. BML and $BML(\neg, \cdash, pos)$

Generalisation to decidable fragments of FOL

- Numerous ways of defining decidable subclasses of FOL

<table>
<thead>
<tr>
<th>Restrict . . .</th>
<th>Decidable classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>arity of predicate symbols</td>
<td>monadic class</td>
</tr>
<tr>
<td>quantifier prefixes</td>
<td>$\exists^, \forall^, \exists\forall\exists^* $</td>
</tr>
<tr>
<td>number of variables</td>
<td>FO^2</td>
</tr>
<tr>
<td>ordering on variables</td>
<td>fluted logic</td>
</tr>
<tr>
<td>quantification by relativisation</td>
<td>guarded fragments</td>
</tr>
<tr>
<td>\forall quantification</td>
<td>Maslov’s dual class $\overline{\mathcal{K}}, \overline{DK}$</td>
</tr>
</tbody>
</table>

- All decidable by resolution (with 1 exception based on extensions of Res^\succ)
Automated correspondence theory

- Given: traditional ML with extra axioms/rules, e.g. $K(m)\Delta$
- Problem: What are first-order frame correspondence properties for axioms/rules in Δ?
- Second-order quantifier elimination methods solve the problem
 - E.g. SCAN (based on resolution)
 - $\forall p[\Box p \rightarrow \Box\Box p] \leadsto$ transitivity of R
- Main issue: successful termination
 - SCAN solves problem for all Sahlqvist formulae and inductive formulae
 - Automatic solution possible for even wider class

Part IV
Other applications and conclusion

Some other applications

- Simulating, generating, implementing and studying different deduction approaches (Thursday)
- Automatically generating models, incl. minimal models
- Second-order quantifier elimination
 - Reasoning with second-order formulae (e.g. modal axioms, rules)
 - Automatically computing correspondence properties

Concluding remarks

- Combination of translation and resolution has practical and theoretical advantages
- Translation is a core technique in computer science
- Resolution provides a powerful and versatile framework
 - for developing practical decision procedures
 - for other applications
- Well-developed implementation: SPASS 3.5
Resolution decision procedures

Part V

Selected references

Surveys