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Introduction

* Aim:
» To study modal and description logics as fragments of
first-order logic

» To use techniques from first-order resolution for deciding

Part |

modal and description logics

» To mention some other applications The logics and translation to FOL

® Remarks:
» Content not as detailed as in ordinary lectures

» Feel free to ask questions !
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Basic modal logic

* Basic modal logic K(,) = propositional logic plus (r1), (r2), ...
Ac={rn,rn,...} (index set)

* Modal formulae: ¢, v — p; | = | ¢V | ()

Actions: a, 3
* [a]¢ = ~{a)-o

* Semantics: Kripke model M = (W, {R;|r; € Ac},v)

M, x = pi iff
M, x E ¢ iff
M, xlE oV iff
M, x = (e iff
MxTle i

x € v(pi)
M. x £ ¢

M, xE¢por M, x E 9
for some R, -successor y of x M,y |= ¢

for all R, -successors y of x M,y |= ¢
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Extensions of the basic modal logic

® Traditional MLs: extension of K, with extra modal axioms

> epistemic ML, doxastic ML, ...

® Dynamic MLs: extensions of K, with operators on actions

» dynamic logic PDL = K(my(V, ;.. 7)

> description logics with

role operators

Reading of [rj]¢ Notation | Logic

@ is necessary O¢ basic modal logic K

agent j knows ¢ Kio epistemic logic KT45 ()
agent j believes ¢ Bio doxastic logic KD45

action rj causes ¢ [ri]® dynamic logic PDL

Rj-relatives of only Cgs | VR;.Cy description logics, ALC family
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Dynamic modal logics

® K(m) plus action-forming operators
* Actions: o, — ri|-a|laV |

® Semantics:

Roa Z (W x W)\Ra

a” |a;B|¢°|id

def

Ra\/g = R, U R/@

Raw = Ry = {(x )| (y.x) € Ra}
Ra:p = {(x.¥)|3z.(x,z) € Ra A (z.y) € Ra}

Ree = {(x,y)|x € Ry}

... defines Peirce logic

Lattice of dynamic modal logics

K(m)(v)

decidable DMLs/DLs without relational
decidable DMLs/DLs with relational —
this talk

Peirce logic

Rg = Idw

Very expressive; undecidable; has many decidable sublogics

Kimy (%1, +« «, %n) = K(m) extended with %1, ..., %,
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-

BML = K(m)(—|, \/)
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Why are extensions with  — and ~ interesting?

® K(m)(~) = tense logic; [a™] is past operator

® K(m)(—) = the logic of ‘some’, ‘all’ and ‘only’

possibility op | (a)¢ ‘¢ is true at some a-successor’

necessity op —(a)—¢ | ‘¢ is true at all a-successors’

sufficiency op | = (—a)¢ | ‘¢ is true at only a-successors’

~ Also definable (by non-logical axioms) are:

- left cyl., right cyl., cross product, domain/range restriction

* Standard tableau methods decide K(m(™)
* K(m)(—) and K(m)(—,~) do not have the tree model property

® Using unrestricted blocking K(m)(—) and K(m)(—,~ ) can be
decided with tableau
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First-order logic: Background

® Most important ‘unifying’ formalism for knowledge
representation and reasoning in CS and Al

® Very Expressive: most domain knowledge can be represented
with ease

® Sound and complete deduction calculi exist
® Many reasoning tools available

* Reasoning is undecidable (not a problem!)
® Many decidable fragments

® Many practical decision procedures for decidable fragments
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Syntax of first-order logic

® Terms:
s, t,u — X (first-order variable)
| a (constant)
| f(s1,--.,sn), n>0 (functional term)
* Atoms:

A B — P(s,...,s,), n>0 (non-equational atom)
| s=t (equational atom)

® First-order formulae:
F.G — L | T

| A (atomic formula)
|  —F | (FxG) x€{AV,—, <}
|  3xF | VxF (quantified formulae)

M4M School, Copenhagen, Nov. 2009 — p.11

Standard translation of MLs into FOL

® Translation mapping: L FOL

» sound & complete, efficiently computable (linear/polynomial)

Standard translation based on semantics of source logic L
Question: T = ¢ ?
Where T = {p — q} ¢ = [r](r)p
Equivalent to: T(T") [=ror M(¢) ?
M) = Vx[Qp(x) — Qq(x)]
N(¢) = VxVy(R(x,y) — 3z(R(y, z) A @y(2))

* Now give to any FOL prover
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Using translation to FOL

Let L be given DML/DL

def

Fi = TN(L) corresponding FO fragment
I sound & complete = any FOL prover can be used
I efficiently computable = if L decidable then F; decidable
FO methods are not automatically decision procedures for F;

» Identify decidable FO fragment G encompassing F; and use
decision procedure of G

F; not necessarily subfragment of known decidable FO fragm.
» Develop FO decision procedure for F;
Decision procedure of G might not be suitable for purpose

» Develop suitable refinement for purpose of F;
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Part Il

First-order resolution

Resolution

Refutation approach, testing (un)satisfiability
Operates on clauses
Two rules: resolution and factoring

No branching rules required ~~ derivations are linear

CVA —-AvV D N
Resolution:
cv D
E . CVAVA
actoring: _
g CVA L
Theorem 1

Res is sound and (refutationally) complete for propositional and

ground clause logic
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Clause logic

Language of resolution is that of clause logic

Literals:
L — A  (positive literal, atom)
|  —A (negative literal)
Clauses:
¢, — 1 (empty clause)

|  LiV...VL, k>1 (non-empty clause)

Free variables interpreted as implicitly universally quantified
Clauses regarded as multi-sets of literals

» P(a) vV P(a) V Q(x) is not the same as P(a) V Q(x)
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Transformation to clausal form Basic resolution calculus  Res for FO clause logic

* Basic algorithm (too naive): Res for ground clause logic plus unification

1. Transform into prenex normal form (PNF): move quantifiers Recolut CV A —-BvV D . 4= B
® Resolution: It o = mgu(A =
to the front - (CV D)o g
~ @Qix1 ... QuxnG (G quantifier-free)
2. Skolemisation: eliminate quantifiers e Factoring: CVvAVE if o = mgu(A = B)
~ quantifer-free formula (CV Ao
3. Transform into conjunctive normal form (CNF) Q) v P(F(y)) ~P(2) V R(z, a)
~ G AN G ® Example: o ={z/f(y)}
Qy) Vv R(f(y). a)
4. Clausify

~ set of clauses N = {Cy, ..., C,} Theorem 2

Res i d and (refutationall lete for FO cl logi
® For any F: F is satisfiable iff Cls(F) is satisfiable es is sound and (refutationally) complete for FO clause logic

[ ] Varlous Standard opt|m|sat|ons eXlSt (See |ater) L4 Pr0b|em2 EXtremer prO|IfIC at generating new C|auseS
M4M School, Copenhagen, Nov. 2009 — p.17 M4M School, Copenhagen, Nov. 2009 — p.19
Running example: Transformation to clausal form Running example (cont'd): Applying basic resolution
e Take ¢ = [r](—p V (r)p); ¢ is satisfiable in Km) * Clausal form:
* FO translation: 1. =R(a,y) V =Qx(y) V R(y. f(y)) given
3Ix[Vy (R(x,y) = (mQp(y) V 32(R(y, 2) A Qp(2))))] 2. <R(a,y) V =Qu(y) V Qp(f(¥)) given

® Prenex normal form:

IxVy3dz [-R(x, y) V Qu(y) V (R(y. 2) A Qp(2))] ® Resolvents under Res:

e Skolemisation: 3. 2R(a,3) V =Qp(a) V —Qp(f(a)) V —|Qp(f2(a)) (1.3,2.1)
~R(a.y) Vv 2Q(y) V (R, F(¥)) A Qpl(f(¥))) 4. =R(a, f(y)) V R(F(y), F(¥)) V =R(a y) V = Qu(y)  (12,2.3)
. Sk. const. for Ix - Sk. term for 3z 5. =R(a, f2(y)) V R(F2(y), 3 (y)) V —R(a, f(y)) (2.3,4.4)

(=R(a,y) V =Qy(y) V R(y. f(y))) A V =R(a,y) V =Qu(y)

(=R(a.y) V =Qu(y) V Qu(f(¥)))

Clausal form: drop A and outer (, )

etc

® Problem: Termination for satisfiable formulae

> Clauses expand in width and depth
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Modern resolution framework

. = resolution calculus Res + restrictions + control

e Guiding principle: Avoid unnecessary inferences whenever
possible

Local restrictions: control inferences performed via
» Admissible ordering >

» Selection function S

Global restrictions of search space via

» General notion of redundancy

Important for implementation: strategies & heuristics, fairness
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Local search control parameters

® Admissible ordering >
» total, well-founded on ground terms and atoms
» on ground literals: ... > —A>A»> B > B> ...
» stable under substitutions
® Selection function S: selects only negative literals
» S(C) = possibly empty multi-set of negative
literal occurrences in C

» Example of selection with selected VAV B

literals indicated as : vV VA

® |dea:
» Inferences restricted to >—-maximal or | S-selected | literals

» S overrides
>- M4M School, Copenhagen, Nov. 2009 — p.22

Ordered resolution calculus with selection  ResZ

® Assume: > admissible atom ordering; S selection function
® Ordered resolution with selection rule:

CVA -BvVvV D
(CV D)o

provided o = mgu(A = B) and
(i) Ao strictly maximal wrt. Co;
(ii) nothing selected in C by S;
(iii) either =B selected,
or else nothing selected in =B Vv D

and = Bo maximal wrt. Do

® Note: variables of premises must be renamed apart
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Ordered resolution calculus with selection ResZ (contd)

® Ordered factoring rule:
CVAVBEB
(CV Ao
provided & = mgu(A = B) and
(i) Ao is maximal wrt. Co;

(ii) nothing is selected in C

Theorem 3
Res? is sound and (refutationally) complete for FO clause logic
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Search spaces become smaller Running example (cont'd): Using ordered resolution

® Assume P = Q = R > T and nothing is selected, i.e. S =0 ® Recall using Res clauses expand in width and depth
1.-TVPVQ given ® Use ordering and/or selection function to prevent this
2. 2PV =R given 1. =R(a,y) V =Qx(y) V R(y, f(y)) given
3. 2Q given 2. 2R(a,y) VQu(y) V Qu(f(y)) given
4. -TV@V-R Res 1,2 ® Let > extension of subterm ordering + no selection f. (S = 0)
5. 7T VR Res 3, 4 - f(t) = t; precedence on pred. symbols: R > Q,
® Derivation is completely deterministic > first criterion: > on maximal arguments
® Generally, proof search still non-deterministic but search space is * No inference steps possible in Res™ |
much smaller than with unrestricted resolution
1. =R(a,y) V =@(y) V R(y. f(y)) given
* Exercise: Choose selection function so that no inferences are DN )
possible 2. =R(a,y) V = Qu(y) V M given
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Decidability of K, by ordered resolution
* How to show that Res™ decides K(m)?
» Characterise a class of clauses closed under Res™ into which
any K(m)-problem can be mapped
Part 1l > Show the class is bounded when defined over a bounded
signature of predicate and function symbols
Decision procedures * Required: structural transformation ...
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Structural transformation of first-order formulae |

Theorem 4
Let @ be a fresh predicate symbol. Then

F[G(X)] satisf. iff F[Q(X)] A VX(Q(X) «+» G(X)) satisf.
e Structural transformation rewrite rule:

FIGK)] = FIRFIAVX(Q(X) < 6(X))

> Introduces new pred. symbol Q for subformula G(X) of F
» View Q(X) as an abbreviation for G(X).
® Small overhead; efficient transformation to CNF

® Our case: Introduce new Qg V non-negated complex ¢
Take polarity of subformulae into account
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Structural transformation for running example

* FO translation of ¢ = [r](—p V (r)p):
3 [Vy (=R(x,y) V(=Quy) vV 3z (R(y. 2) A Qp(2))) ]
Qryp(y)
Q-pv(np(y)

Q‘v’r.(—|p\/<r)p)(x)
* Clausal form Cls =(=[l1(¢)):

=Qnp(x) V R(x, f(x))

=Qinyp(x) V Qp(f(x))

ﬁQﬂpVU)p(X) Vv ﬁQp(x) 4 Q<f>p(X)

Q) (=pv(ryp) (X) V 2R(x, ¥) V Q-pyryp(y)

Q[r](_'pv<r)P) (a) M4M School, Copenhagen, Nov. 2009 — p.30

General form of input clauses

® Form of input clauses for Kp:

(—)@s(a)
R(a, b)
(7)Qp(x) V (7)Q1(x) V ... V (7)Qn(x)
(m)Qs(x) V =R(x,y) V () Q(y)
(m)Qs(x) V R(x, fp(x))
() Qs(x) V (7)Q(fs(x))
® Ordering: binary literals > unary literals

depth 2 literals > depth 1 literals

® Step 1: In each clause what are the maximal literals?
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General form of input clauses :  Maximal literals

® Form of input clauses for Kp:

(—)Qs(a)
R(a, b)
(7)Qp(x) V (7)Qu(x) V... V (7)@n(x) (=1 max. lits)
(7)Qp(x) V =R(x,y) V (7)R(y)
() Qe(x) V R(x, fg(x))
() Qs(x) Vv (2)Q(fs (%))

® Ordering: binary literals > unary literals
depth 2 literals > depth 1 literals

® Step 1: In each clause what are the maximal literals?

® Step 2: What do the resolvents & factors look like?
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Clausal class MC | o Generalisation

® General form of derived clauses ® (Clausal class MC :
» ground clauses with only unary literals > ground unary clauses
= (7)Qp(x) V (R)Q(X) V... V (2)Q(x)  (0< ) R(a b)
> (F)Qe(x) V (7)Qu(¥) V ... V (7)Qn(x)
V (2)@i(f(x) V..o V (2)@m(fe(x)) (0 < n,m)

e |et MC = class of these clauses:

v

v

non-ground unary clauses with arguments x or f(x)

(m)Qp(x) V 2R(x,y) V (7)Q(y)

(7)Qa(x) V R(x, f5(x))
ground unary clauses ® What if binary literals are negated 7
R(a, b)

v

v

v

v

v

non-ground unary clauses with arguments x or fg(x)
() Qs(x) vV 2R(x, y) V (7)Q(y)
(m)Qa(x) V R(x, fp(x))

\j

v

M4M School, Copenhagen, Nov. 2009 — p.32 M4M School, Copenhagen, Nov. 2009 — p.34
Decidability of K.,y by ordered resolution Generalisation

Lemma 5 ® Clausal class extended :
For any finite clause set N in MC: ~ ground unary clauses

1. Any derived clause belongs to MC » (m)R(a, b)

2. Any Res™ -derivation from N terminates in EXPTIME » non-ground unary clauses with arguments x or f(x)
Theorem 6 > (7)Qs(x) V (H)R(x,y) V (7)Q(y)
Assume ¢ any formula and any set I in K(,); = (7)Qp(x) V (m)R(x, fp(x))
let N = Cls=(N(F) A =MM(g)) * Lemma true for the extended class

1. Any Res™ -derivation from N terminates in EXPTIME
2. T |= ¢ iff Res™ derives L from N

Thus, the theorem is true for Ky, (—) !

What if arguments in binary literals can be swapped ?
e Complexity is optimal for I # @
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Generalisation

* Clausal class MC* :
» ground unary clauses
~ (=)R™)(a, b)
» non-ground unary clauses with arguments x or f(x)

(7)Qs(x) V (MR (x, y) V (7)Q(y)

(m)Qp(x) V ()R (x, f(x))

® Lemma true for the extended class

\}

v

® Thus, the theorem is true for K(m)(—) !
* And for K(m)(™) and Kmy(—,7) !

M4M School, Copenhagen, Nov. 2009 — p.34

Ordered resolution decides  K,,(—,”)

Theorem 7
Res”™ is decision procedure for any logic between K(m) and
K(m)(—.~) and has (optimal) EXPTIME complexity

* Also true for any logic between K(,, and
Ky (=70 10 L5 5 X))

® Using the axiomatic translation translation many traditional
MLs, incl. KD45, S4, ..., can be efficiently embedded into MC*

® Gives complexity optimal decision procedures
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Generalisation to BML and beyond

e QOrdered resolution decides wider clausal class: DL™*

MC* C DL* MC* C DL*
BML C DL* BML(~,;P*) C DL*
FO2 C DL* FO N DL* #0

® DL* subsumes many DLs

e DL* is NEXPTIME-complete

Theorem 8
Res™ + condensing, or splitting, decides DL*, and hence all
subsumed logics, incl. BML and BML(~, ;P°*)
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Generalisation to decidable fragments of FOL

* Numerous ways of defining decidable subclasses of FOL

Restrict . .. Decidable classes

arity of predicate symbols monadic class
quantifier prefixes = B VA (v I A v
number of variables FO?

ordering on variables fluted logic

quantification by relativisation | guarded fragments

V quantification Maslov's dual class K, DK

* All decidable by resolution (with 1 exception based on
extensions of Res™)
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Automated correspondence theory

® Given:  traditional ML with extra axioms/rules, e.g. K(m)A
Problem: What are first-order frame correspondence properties
for axioms/rules in A?

® Second-order quantifer elimination methods solve the problem

Part IV » E.g. SCAN (based on resolution)

L. . » Vp[Op — OOp] ~ transitivity of R
Other applications and conclusion
® Main issue: successful termination

» SCAN solves problem for all Sahlqvist formulae and inductive
formulae
> Automatic solution possible for even wider class

® New book: Second-Order Quantifier Elimination
by Gabbay, Schmidt & Szatas, College Publ., 2008.
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Some other applications Concluding remarks

* Simulating, generating, implementing and studying different Combination of translation and resolution has practical and

deduction approaches (Thursday) theoretical advantages

® Automatically generating models, incl. minimal models Translation is a core technique in computer science

® Second-order quantifier elimination Resolution provides a powerful and versatile framework
» Reasoning with second-order formulae » for developing practical decision procedures

(e.g. modal axioms, rules) ~ for other applications

» Automatically computing correspondence properties

Well-developed implementation: SPASS 3.5
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Part V

Selected references

Surveys

® De Nivelle, H. and Schmidt, R. A. and Hustadt, U. (2000), Resolution-Based Methods
for Modal Logics. Logic J. IGPL 8 (3), 265-292.

® Schmidt, R. A. and Hustadt, U. (2003), Mechanised Reasoning and Model Generation
for Extended Modal Logics. Theory and Applications of Relational Structures as
Knowledge Instruments. LNCS 2929, Springer, 38-67.

® Hustadt, U., Schmidt, R. A. and Georgieva, L. (2004), A Survey of Decidable
First-Order Fragments and Description Logics. J. Relational Methods Comput. Sci. 1
251-276.

® Schmidt, R. A. and Hustadt, U. (2006), First-Order Resolution Methods for Modal
Logics. LNCS, Springer, to appear. Available from my home page.

® Horrocks, I., Hustadt, U., Sattler, U. and Schmidt, R. A. (2007), Computational
Modal Logic. In Handbook of Modal Logic. Elsevier, 181-245.
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Resolution decision procedures

Hustadt, U. and Schmidt, R. A. (2000), Issues of Decidability for Description Logics in
the Framework of Resolution. Automated Deduction in Classical and Non-Classical
Logics. LNAI 1761, Springer, 191-205.

Hustadt, U. and Schmidt, R. A. (2000), Using Resolution for Testing Modal
Satisfiability and Building Models. In SAT 2000: Highlights of Satisfiability Research
in the Year 2000. 10S Press, 459-483.

Hustadt, U. and Schmidt, R. A. (1999), Maslov’s Class K Revisited. In CADE-16.
LNAI 1632, Springer, 172-186.

Schmidt, R. A. and Hustadt, U. (2000), A Resolution Decision Procedure for Fluted
Logic. In CADE-17. LNAI 1831, Springer, 433-448.

Georgieva, L., Hustadt, U. and Schmidt, R. A. (2002), A New Clausal Class Decidable
by Hyperresolution. In CADE-18. LNAI 2392, Springer, 260-274.

Schmidt, R. A. and Hustadt, U. (2007), The Axiomatic Translation Principle for
Modal Logic. ACM Trans. Comput. Log. 8 (4), 1-55.
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