Overview

Resolution-Based Theorem Proving for Modal and Description Logic

Renate Schmidt

The University of Manchester, UK

- The logics and translation to FOL
- First-order resolution
- Resolution decision procedures
- Other applications

M4M School, Copenhagen, Nov. 2009 - p.3

Introduction

- Aim:
 - To study modal and description logics as fragments of first-order logic
 - To use techniques from first-order resolution for deciding modal and description logics
 - ► To mention some other applications
- Remarks:
 - Content not as detailed as in ordinary lectures
 - ► Feel free to ask questions !

Part I

The logics and translation to FOL

Basic modal logic

- Basic modal logic $K_{(m)}$ = propositional logic plus $\langle r_1 \rangle$, $\langle r_2 \rangle$, ... $Ac = \{r_1, r_2, ...\}$ (index set)
- Modal formulae: $\phi, \psi \longrightarrow p_i \mid \neg \phi \mid \phi \lor \psi \mid \langle \alpha \rangle \phi$ Actions: $\alpha, \beta \longrightarrow r_j$
- $[\alpha]\phi \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \neg \langle \alpha \rangle \neg \phi$
- Semantics: Kripke model $\mathcal{M} = (W, \{R_j \mid r_j \in Ac\}, v)$
- $\begin{array}{lll} \mathcal{M}, x \models p_i & \text{iff} & x \in v(p_i) \\ \mathcal{M}, x \models \neg \phi & \text{iff} & \mathcal{M}, x \not\models \phi \\ \mathcal{M}, x \models \phi \lor \psi & \text{iff} & \mathcal{M}, x \models \phi \text{ or } \mathcal{M}, x \models \psi \\ \mathcal{M}, x \models \langle r_j \rangle \phi & \text{iff} & \text{for some } R_{r_j} \text{-successor } y \text{ of } x & \mathcal{M}, y \models \phi \\ \mathcal{M}, x \models [r_j] \phi & \text{iff} & \text{for all } R_{r_j} \text{-successors } y \text{ of } x & \mathcal{M}, y \models \phi \\ \end{array}$

Extensions of the basic modal logic

- Traditional MLs: extension of $K_{(m)}$ with extra modal axioms
 - ► epistemic ML, doxastic ML,
- Dynamic MLs: extensions of $K_{(m)}$ with operators on actions
 - dynamic logic PDL = $K_{(m)}(\lor, ;, *, ?)$
 - description logics with role operators

Reading of $[r_j]\phi$	Notation	Logic
ϕ is necessary	$\Box \phi$	basic modal logic K
agent j knows ϕ	$K_j\phi$	epistemic logic KT45 _(m)
agent j believes ϕ	$B_j\phi$	doxastic logic KD45 _(m)
action r_j causes ϕ	$[r_j]\phi$	dynamic logic <i>PDL</i>
R_j -relatives of only C_{ϕ} s	$\forall R_j. C_{\phi}$	description logics, \mathcal{ALC} family

• $K_{(m)}(\star_1, \ldots, \star_n) = K_{(m)}$ extended with \star_1, \ldots, \star_n

 $R_{\alpha \smile} \stackrel{\text{def}}{=} R_{\alpha}^{\smile} \stackrel{\text{def}}{=} \{(x, y) \mid (y, x) \in R_{\alpha}\}$

• Actions: $\alpha, \beta \longrightarrow r_i \mid \neg \alpha \mid \alpha \lor \beta \mid \alpha^{\smile} \mid \alpha; \beta \mid \phi^c \mid id$

 $R_{\alpha \wedge \beta} \stackrel{\text{def}}{=} \{(x, y) \mid \exists z. (x, z) \in R_{\alpha} \land (z, y) \in R_{\beta}\}$

 $R_{\phi^c} \stackrel{\text{def}}{=} \{(x, y) \mid x \in R_{\phi}\} \qquad \qquad R_{id} \stackrel{\text{def}}{=} Id_W$

 $R_{\neg \alpha} \stackrel{\text{def}}{=} (W \times W) \backslash R_{\alpha} \qquad \qquad R_{\alpha \lor \beta} \stackrel{\text{def}}{=} R_{\alpha} \cup R_{\beta}$

M4M School, Copenhagen, Nov. 2009 - p.

Lattice of dynamic modal logics

Dynamic modal logics

• ... defines Peirce logic

Semantics:

• K_(m) plus action-forming operators

decidable DMLs/DLs without relational decidable DMLs/DLs with relational this talk

M4M School, Copenhagen, Nov. 2009 - p.8

Very expressive; undecidable; has many decidable sublogics

Why are extensions with \neg and \lor interesting?

- $\mathcal{K}_{(m)}({}^{\smile})=$ tense logic; $[\alpha{}^{\smile}]$ is past operator
- $K_{(m)}(\neg)$ = the logic of 'some', 'all' and 'only'

possibility op	$\langle lpha angle \phi$	' ϕ is true at some $lpha$ -successor'
necessity op	$\neg \langle lpha angle \neg \phi$	' ϕ is true at all $lpha$ -successors'
sufficiency op	$\neg \langle \neg \alpha \rangle \phi$	' ϕ is true at only $lpha$ -successors'

- Also definable (by non-logical axioms) are:
 - left cyl., right cyl., cross product, domain/range restriction
- Standard tableau methods decide K_(m)([∼])
- $K_{(m)}(\neg)$ and $K_{(m)}(\neg, \widecheck{})$ do not have the tree model property
- Using unrestricted blocking K_(m)(¬) and K_(m)(¬,[~]) can be decided with tableau

M4M School, Copenhagen, Nov. 2009 - p.9

First-order logic: Background

- Most important 'unifying' formalism for knowledge representation and reasoning in CS and AI
- Very Expressive: most domain knowledge can be represented with ease
- Sound and complete deduction calculi exist
- Many reasoning tools available
- Reasoning is undecidable (not a problem!)
- Many decidable fragments
- Many practical decision procedures for decidable fragments

Syntax of first-order logic

• Terms:			
$s, t, u \longrightarrow$	X		(first-order variable)
	а		(constant)
	$f(s_1,\ldots,s_n),$	<i>n</i> > 0	(functional term)
• Atoms:			
$A, B \longrightarrow$	$P(s_1,\ldots,s_n),$	$n \ge 0$	(non-equational atom)
	$s \approx t$		(equational atom)
• First-order fo	rmulae:		
$F, G \longrightarrow$	$\bot \top$		
	A	(atomi	c formula)
	$\neg F \mid (F \star G)$	$\star \in \{$	$\land,\lor,\rightarrow,\leftrightarrow\}$
	$\exists xF \mid \forall xF$	(quant	ified formulae)
			MAM School Cononhagon New 2000

M4M School, Copenhagen, Nov. 2009 - p.11

Standard translation of MLs into FOL

- Translation mapping: $L \longrightarrow FOL$
 - sound & complete, efficiently computable (linear/polynomial)
- Standard translation based on semantics of source logic L
- Question: $\Gamma \models \phi$?

Where
$$\Gamma \stackrel{\text{\tiny def}}{=} \{p \to q\} \qquad \phi \stackrel{\text{\tiny def}}{=} [r] \langle r \rangle p$$

• Equivalent to: $\Pi(\Gamma) \models_{FOL} \Pi(\phi)$?

$$\Pi(\Gamma) = \forall x [Q_p(x) \to Q_q(x)]$$

$$\Pi(\phi) = \forall x \forall y (R(x, y) \to \exists z (R(y, z) \land Q_p(z)))$$

• Now give to any FOL prover

Using translation to FOL

• Let L be given DML/DL

 $F_L \stackrel{\text{def}}{=} \Pi(L)$ corresponding FO fragment

- Π sound & complete \Rightarrow any FOL prover can be used
- Π efficiently computable \Rightarrow if *L* decidable then *F*_{*L*} decidable
- FO methods are not automatically decision procedures for F_L
 - Identify decidable FO fragment G encompassing F_L and use decision procedure of G
- F_L not necessarily subfragment of known decidable FO fragm.
 - Develop FO decision procedure for F_L
- Decision procedure of G might not be suitable for purpose
 - Develop suitable refinement for purpose of F_L

M4M School, Copenhagen, Nov. 2009 - p.13

Resolution

- Refutation approach, testing (un)satisfiability
- Operates on clauses
- Two rules: resolution and factoring
- No branching rules required \rightsquigarrow derivations are linear

Theorem 1

Res is sound and (refutationally) complete for propositional and ground clause logic

M4M School, Copenhagen, Nov. 2009 - p.15

Clause logic

- Language of resolution is that of clause logic
- Literals:
 - $L \longrightarrow A$ (positive literal, atom)
 - $| \neg A$ (negative literal)
- Clauses:

 $C, D \longrightarrow \bot$ (empty clause)

 $L_1 \lor \ldots \lor L_k$, $k \ge 1$ (non-empty clause)

- Free variables interpreted as implicitly universally quantified
- Clauses regarded as multi-sets of literals
 - $P(a) \lor P(a) \lor Q(x)$ is not the same as $P(a) \lor Q(x)$

M4M School, Copenhagen, Nov. 2009 - p.16

Part II

First-order resolution

Transformation to clausal form

- Basic algorithm (too naive):
 - 1. Transform into prenex normal form (PNF): move quantifiers to the front
 - $\rightsquigarrow Q_1 x_1 \dots Q_n x_n G$ (G quantifier-free)
 - 2. Skolemisation: eliminate quantifiers
 - $\rightsquigarrow \ \ \mathsf{quantifer-free} \ \mathsf{formula}$
 - 3. Transform into conjunctive normal form (CNF) $\rightsquigarrow C_1 \land \ldots \land C_n$
 - 4. Clausify
 - \rightsquigarrow set of clauses $N = \{C_1, \ldots, C_n\}$
- For any F: F is satisfiable iff Cls(F) is satisfiable
- Various standard optimisations exist (see later)

M4M School, Copenhagen, Nov. 2009 - p.17

Running example: Transformation to clausal form

- Take $\phi \stackrel{\text{\tiny def}}{=} [r](\neg p \lor \langle r \rangle p); \phi$ is satisfiable in $\mathcal{K}_{(m)}$
- FO translation:

$$\exists x \left[\forall y \left(R(x, y) \to \left(\neg Q_p(y) \lor \exists z \left(R(y, z) \land Q_p(z) \right) \right) \right] \right]$$

• Prenex normal form:

$$\exists x \forall y \exists z \left[\neg R(x, y) \lor \neg Q_p(y) \lor (R(y, z) \land Q_p(z)) \right]$$

• Skolemisation:

 $\neg R(a, y) \lor \neg Q_p(y) \lor (R(y, f(y)) \land Q_p(f(y)))$ Sk. const. for $\exists x$ Sk. term for $\exists z$

• CNF:

$$(\neg R(a, y) \lor \neg Q_p(y) \lor R(y, f(y))) \land (\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y)))$$

• Clausal form: drop \wedge and outer (,)

M4M School, Copenhagen, Nov. 2009 - p.18

Basic resolution calculus Res for FO clause logic

• Res for ground clause logic plus unification

• **Resolution:**
$$\frac{C \lor A \quad \neg B \lor D}{(C \lor D)\sigma} \quad \text{if } \sigma = \operatorname{mgu}(A \doteq B)$$

• Factoring:
$$\frac{C \lor A \lor B}{(C \lor A)\sigma}$$
 if $\sigma = mgu(A \doteq B)$

• Example:
$$\frac{Q(y) \lor P(f(y)) \quad \neg P(z) \lor R(z, a)}{Q(y) \lor R(f(y), a)} \quad \sigma = \{z/f(y)\}$$

Theorem 2

Res is sound and (refutationally) complete for FO clause logic

• Problem: Extremely prolific at generating new clauses

M4M School, Copenhagen, Nov. 2009 - p.19

Running example (cont'd): Applying basic resolution

• Clausal form:

1.
$$\neg R(a, y) \lor \neg Q_p(y) \lor R(y, f(y))$$
 given
2. $\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y))$ given

• Resolvents under *Res*:

3.
$$\neg R(a, a) \lor \neg Q_p(a) \lor \neg Q_p(f(a)) \lor \neg Q_p(f^2(a))$$
 (1.3, 2.1)

4.
$$\neg R(a, f(y)) \lor R(f(y), f^2(y)) \lor \neg R(a, y) \lor \neg Q_p(y)$$
 (1.2, 2.3)

5.
$$\neg R(a, f^2(y)) \lor R(f^2(y), f^3(y)) \lor \neg R(a, f(y))$$
 (2.3, 4.4
 $\lor \neg R(a, y) \lor \neg Q_{\rho}(y)$

etc

- Problem: Termination for satisfiable formulae
 - Clauses expand in width and depth

M4M School, Copenhagen, Nov. 2009 - p.20

Modern resolution framework

- \dots = resolution calculus *Res* + restrictions + control
- Guiding principle: Avoid unnecessary inferences whenever
 possible
- · Local restrictions: control inferences performed via
 - Admissible ordering >
 - ► Selection function *S*
- Global restrictions of search space via
 - General notion of redundancy
- Important for implementation: strategies & heuristics, fairness

M4M School, Copenhagen, Nov. 2009 - p.21

Local search control parameters

- Admissible ordering ≻
 - total, well-founded on ground terms and atoms
 - on ground literals: $\ldots \succ \neg A \succ A \succ \neg B \succ B \succ \ldots$
 - stable under substitutions
- Selection function *S*: selects only negative literals
 - ► S(C) = possibly empty multi-set of negative literal occurrences in C
 - ► Example of selection with selected $\neg A \lor \neg A \lor B$ literals indicated as L: $\neg B_0 \lor \neg B_1 \lor$
- Idea:
 - ► Inferences restricted to <u>≻-maximal</u> or <u>S</u>-selected literals
 - S overrides \succ

M4M School, Copenhagen, Nov. 2009 – p.22

- Assume: \succ admissible atom ordering; S selection function
- Ordered resolution with selection rule:

 $\frac{C \lor A \quad \neg B \lor D}{(C \lor D)\sigma}$

provided
$$\sigma = \operatorname{mgu}(A \doteq B)$$
 and

- (i) $A\sigma$ strictly maximal wrt. $C\sigma$;
- (ii) nothing selected in C by S;
- (iii) either $\neg B$ selected,
 - or else nothing selected in $\neg B \lor D$ and $\neg B\sigma$ maximal wrt. $D\sigma$
- Note: variables of premises must be renamed apart

M4M School, Copenhagen, Nov. 2009 - p.23

Ordered resolution calculus with selection $\frac{Res_{S}}{C}$ (cont'd)

• Ordered factoring rule:

$$\frac{C \lor A \lor B}{(C \lor A)\sigma}$$

provided $\sigma = {\sf mgu}(A \doteq B)$ and

- (i) $A\sigma$ is maximal wrt. $C\sigma$;
- (ii) nothing is selected in C

Theorem 3

 Res_{S}^{\succ} is sound and (refutationally) complete for FO clause logic

• Assume $P \succ Q \succ R \succ T$ and nothing is selected, i.e. $S = \emptyset$

1. $\neg T \lor \underline{P} \lor Q$	given
2. $\underline{\neg P} \lor \neg R$	given
3. <u>¬Q</u>	given
$4. \neg T \lor \underline{Q} \lor \neg R$	Res 1, 2
5. $\neg T \lor \underline{\neg R}$	Res 3, 4

- Derivation is completely deterministic
- Generally, proof search still non-deterministic but search space is much smaller than with unrestricted resolution
- Exercise: Choose selection function so that no inferences are possible

M4M School, Copenhagen, Nov. 2009 - p.25

Running example (cont'd): Using ordered resolution

- Recall using *Res* clauses expand in width and depth
- Use ordering and/or selection function to prevent this

1. $\neg R(a, y) \lor \neg Q_p(y) \lor R(y, f(y))$ given

2. $\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y))$ given

- Let \succ extension of subterm ordering + no selection f. ($S = \emptyset$)
 - $f(t) \succ t$; precedence on pred. symbols: $R \succ Q_p$
 - first criterion: \succ on maximal arguments
- No inference steps possible in *Res*≻ !

1. $\neg R(a, y) \lor \neg Q_p(y) \lor \underline{R(y, f(y))}$	given
2. $\neg R(a, y) \lor \neg Q_p(y) \lor Q_p(f(y))$	given

M4M School, Copenhagen, Nov. 2009 - p.27

Decidability of $K_{(m)}$ by ordered resolution

- How to show that Res^{\succ} decides $K_{(m)}$?
 - Characterise a class of clauses closed under *Res*[≻] into which any *K*_(m)-problem can be mapped
 - Show the class is bounded when defined over a bounded signature of predicate and function symbols
- Required: structural transformation

Part III

Decision procedures

Structural transformation of first-order formulae

Theorem 4

Let Q be a fresh predicate symbol. Then

 $F[G(\overline{x})]$ satisf. iff $F[Q(\overline{x})] \land \forall \overline{x}(Q(\overline{x}) \leftrightarrow G(\overline{x}))$ satisf.

• Structural transformation rewrite rule:

 $F[G(\overline{x})] \implies F[Q(\overline{x})] \land \forall \overline{x}(Q(\overline{x}) \leftrightarrow G(\overline{x}))$

- ► Introduces new pred. symbol Q for subformula $G(\overline{x})$ of F
- View $Q(\overline{x})$ as an abbreviation for $G(\overline{x})$.
- Small overhead; efficient transformation to CNF
- Our case: Introduce new $Q_{\phi} \forall$ non-negated complex ϕ Take polarity of subformulae into account

M4M School, Copenhagen, Nov. 2009 - p.29

Structural transformation for running example

• FO translation of
$$\phi = [r](\neg p \lor \langle r \rangle p)$$
:

$$\exists x \left[\forall y (\neg R(x, y) \lor (\neg Q_p(y) \lor \exists z (R(y, z) \land Q_p(z))) \right]$$

$$Q_{\langle r \rangle p}(y)$$

$$Q_{\neg p \lor \langle r \rangle p}(y)$$

$$Q_{\neg p \lor \langle r \rangle p}(y)$$

$$Q_{\forall r.(\neg p \lor \langle r \rangle p}(x)$$
• Clausal form Cls $\equiv (\neg \Pi(\phi))$:

$$\neg Q_{\langle r \rangle p}(x) \lor R(x, f(x))$$

$$\neg Q_{\langle r \rangle p}(x) \lor Q_p(f(x))$$

$$\neg Q_{\neg p \lor \langle r \rangle p}(x) \lor \neg Q_p(x) \lor Q_{\langle r \rangle p}(x)$$

$$\neg Q_{[r](\neg p \lor \langle r \rangle p)}(a)$$
M4M School, Copenhagen, Nov. 2009 - p.30

General form of input clauses

• Form of input clauses for $K_{(m)}$:

 $(\neg)Q_{\phi}(a)$ R(a, b) $(\neg)Q_{\phi}(x) \lor (\neg)Q_{1}(x) \lor \ldots \lor (\neg)Q_{n}(x)$ $(\neg)Q_{\phi}(x) \lor \neg R(x, y) \lor (\neg)Q(y)$ $(\neg)Q_{\phi}(x) \lor R(x, f_{\phi}(x))$ $(\neg)Q_{\phi}(x) \lor (\neg)Q(f_{\phi}(x))$

- Ordering: binary literals ≻ unary literals depth 2 literals ≻ depth 1 literals
- Step 1: In each clause what are the maximal literals?

M4M School, Copenhagen, Nov. 2009 - p.31

General form of input clauses : Maximal literals

• Form of input clauses for $K_{(m)}$:

 $\frac{(\neg)Q_{\phi}(a)}{\underline{R}(a,b)} \\
(\neg)Q_{\phi}(x) \lor (\neg)Q_{1}(x) \lor \ldots \lor (\neg)Q_{n}(x) \quad (\geq 1 \text{ max. lits}) \\
(\neg)Q_{\phi}(x) \lor \underline{\neg R(x,y)} \lor (\neg)Q(y) \\
(\neg)Q_{\phi}(x) \lor \underline{R(x,f_{\phi}(x))} \\
(\neg)Q_{\phi}(x) \lor (\underline{\neg)Q(f_{\phi}(x))}$

- Ordering: binary literals ≻ unary literals
 depth 2 literals ≻ depth 1 literals
- Step 1: In each clause what are the maximal literals?
- Step 2: What do the resolvents & factors look like?

Clausal class MC

- General form of derived clauses
 - ground clauses with only unary literals
 - $\bullet \ (\neg)Q_{\phi}(x) \lor (\neg)Q_{1}(x) \lor \ldots \lor (\neg)Q_{n}(x) \qquad (0 \le n)$
 - $(\neg)Q_{\phi}(x) \lor (\neg)Q_{1}(x) \lor \ldots \lor (\neg)Q_{n}(x) \\ \lor (\neg)Q_{1}(f_{\phi}(x)) \lor \ldots \lor (\neg)Q_{m}(f_{\phi}(x)) \quad (0 \le n, m)$
- Let *MC* = class of these clauses:
 - ground unary clauses
 - ► R(a, b)
 - non-ground unary clauses with arguments x or $f_{\phi}(x)$
 - $(\neg)Q_{\phi}(x) \vee \neg R(x, y) \vee (\neg)Q(y)$
 - $(\neg)Q_{\phi}(x) \vee \underline{R(x, f_{\phi}(x))}$

M4M School, Copenhagen, Nov. 2009 - p.32

Generalisation

- Clausal class MC :
 - ground unary clauses
 - ► <u>R(a, b)</u>
 - non-ground unary clauses with arguments x or f(x)
 - $(\neg)Q_{\phi}(x) \vee \neg R(x, y) \vee (\neg)Q(y)$
 - $\blacktriangleright (\neg) Q_{\phi}(x) \lor R(x, f_{\phi}(x))$
- What if binary literals are negated ?

M4M School, Copenhagen, Nov. 2009 - p.34

Decidability of $K_{(m)}$ by ordered resolution

Lemma 5

For any finite clause set N in MC:

- 1. Any derived clause belongs to MC
- 2. Any Res^{\succ} -derivation from N terminates in EXPTIME

Theorem 6

Assume ϕ any formula and any set Γ in $K_{(m)}$; let $N = \text{Cls} \Xi(\Pi(\Gamma) \land \neg \Pi(\phi))$

- 1. Any Res^{\succ} -derivation from N terminates in EXPTIME
- 2. $\Gamma \models \phi$ iff Res^{\succ} derives \perp from N
- Complexity is optimal for $\Gamma \neq \emptyset$

Generalisation

- Clausal class extended :
 - ground unary clauses
 - ► (¬)R(a, b)
 - non-ground unary clauses with arguments x or f(x)
 - $\succ (\neg) Q_{\phi}(x) \lor (\neg) R(x, y) \lor (\neg) Q(y)$
- $(\neg)Q_{\phi}(x) \lor (\neg)R(x, f_{\phi}(x))$
- Lemma true for the extended class
- Thus, the theorem is true for $K_{(m)}(\neg)$!
- What if arguments in binary literals can be swapped ?

Generalisation

- Clausal class MC* :
 - ► ground unary clauses
 - $(\neg) \underline{R}^{(\smile)}(a, b)$
 - non-ground unary clauses with arguments x or f(x)
 - $(\neg)Q_{\phi}(x) \vee (\neg)\underline{R}^{(\smile)}(x,y) \vee (\neg)Q(y)$
 - $\blacktriangleright (\neg) Q_{\phi}(x) \lor (\neg) R^{(\smile)}(x, f_{\phi}(x))$
- Lemma true for the extended class
- Thus, the theorem is true for $K_{(m)}(\neg)$!
- And for $K_{(m)}(\check{})$ and $K_{(m)}(\neg,\check{})$!

M4M School, Copenhagen, Nov. 2009 - p.34

Ordered resolution decides $K_{(m)}(\neg, \)$

Theorem 7

Res[≻] is decision procedure for any logic between $K_{(m)}$ and $K_{(m)}(\neg, \widetilde{})$ and has (optimal) EXPTIME complexity

- Also true for any logic between K_(m) and K_(m)(¬, ~, 1, ↓, ·^c, ^c, ×)
- Using the axiomatic translation translation many traditional MLs, incl. KD45, S4, ..., can be efficiently embedded into MC*
- Gives complexity optimal decision procedures

• Ordered resolution decides wider clausal class: *DL**

$MC^* \subseteq DL^*$	$MC^* \subseteq DL^*$
$BML \subseteq DL^*$	$BML({}^{\smile},;{}^{pos}) \subseteq DL^*$
$FO^2 \subseteq DL^*$	$FO^3 \cap DL^* \neq \emptyset$

- *DL** subsumes many DLs
- *DL** is NEXPTIME-complete

Theorem 8

 Res^{\succ} + condensing, or splitting, decides DL^* , and hence all subsumed logics, incl. BML and $BML({}^{\smile},;^{pos})$

M4M School, Copenhagen, Nov. 2009 - p.36

Generalisation to decidable fragments of FOL

• Numerous ways of defining decidable subclasses of FOL

Restrict	Decidable classes
arity of predicate symbols	monadic class
quantifier prefixes	3*X*, 3*X3*, 3*XX3*
number of variables	FO ²
ordering on variables	fluted logic
quantification by relativisation	guarded fragments
\forall quantification	Maslov's dual class \overline{K} , \overline{DK}

 All decidable by resolution (with 1 exception based on extensions of *Res*[≻])

Part IV

Other applications and conclusion

Automated correspondence theory

- Given: traditional ML with extra axioms/rules, e.g. K_(m)Δ
 Problem: What are first-order frame correspondence properties for axioms/rules in Δ?
- Second-order quantifer elimination methods solve the problem
 - ► E.g. SCAN (based on resolution)
 - $\blacktriangleright \forall p[\Box p \rightarrow \Box \Box p] \rightsquigarrow \text{ transitivity of } R$
- Main issue: successful termination
 - SCAN solves problem for all Sahlqvist formulae and inductive formulae
 - Automatic solution possible for even wider class
- New book: Second-Order Quantifier Elimination
 by Gabbay, Schmidt & Szałas, College Publ., 2008.

M4M School, Copenhagen, Nov. 2009 - p.40

Some other applications

- Simulating, generating, implementing and studying different deduction approaches (Thursday)
- Automatically generating models, incl. minimal models
- Second-order quantifier elimination
 - Reasoning with second-order formulae (e.g. modal axioms, rules)
 - Automatically computing correspondence properties

Concluding remarks

- Combination of translation and resolution has practical and theoretical advantages
- Translation is a core technique in computer science
- Resolution provides a powerful and versatile framework
 - for developing practical decision procedures
 - ► for other applications
- Well-developed implementation: SPASS 3.5

- Hustadt, U. and Schmidt, R. A. (2000), Issues of Decidability for Description Logics in the Framework of Resolution. *Automated Deduction in Classical and Non-Classical Logics.* LNAI 1761, Springer, 191–205.
- Hustadt, U. and Schmidt, R. A. (2000), Using Resolution for Testing Modal Satisfiability and Building Models. In SAT 2000: Highlights of Satisfiability Research in the Year 2000. IOS Press, 459–483.
- Hustadt, U. and Schmidt, R. A. (1999), Maslov's Class K Revisited. In CADE-16. LNAI 1632, Springer, 172–186.
- Schmidt, R. A. and Hustadt, U. (2000), A Resolution Decision Procedure for Fluted Logic. In CADE-17. LNAI 1831, Springer, 433–448.
- Georgieva, L., Hustadt, U. and Schmidt, R. A. (2002), A New Clausal Class Decidable by Hyperresolution. In CADE-18. LNAI 2392, Springer, 260–274.
- Schmidt, R. A. and Hustadt, U. (2007), The Axiomatic Translation Principle for Modal Logic. ACM Trans. Comput. Log. 8 (4), 1–55.

M4M School, Copenhagen, Nov. 2009 - p.44

Surveys

 De Nivelle, H. and Schmidt, R. A. and Hustadt, U. (2000), Resolution-Based Methods for Modal Logics. *Logic J. IGPL* 8 (3), 265–292.

Part V

Selected references

- Schmidt, R. A. and Hustadt, U. (2003), Mechanised Reasoning and Model Generation for Extended Modal Logics. *Theory and Applications of Relational Structures as Knowledge Instruments*. LNCS 2929, Springer, 38–67.
- Hustadt, U., Schmidt, R. A. and Georgieva, L. (2004), A Survey of Decidable First-Order Fragments and Description Logics. *J. Relational Methods Comput. Sci.* 1 251–276.
- Schmidt, R. A. and Hustadt, U. (2006), First-Order Resolution Methods for Modal Logics. LNCS, Springer, to appear. Available from my home page.
- Horrocks, I., Hustadt, U., Sattler, U. and Schmidt, R. A. (2007), Computational Modal Logic. In *Handbook of Modal Logic*. Elsevier, 181–245.